
August 2023

GETTING STARTED WITH
THE RP2040

https://community.element14.com?CMP=RP2040-EBOOK-PDF

04 CHAPTER - 1 Introduction

08 CHAPTER - 3 Turning an LED On/Off with a Button

 (Basic Input/Output)

10 CHAPTER - 4 Communication with a Console

 (Basic Networking)

13 CHAPTER - 5 Controlling a Servo (Motor Control)

05 CHAPTER - 2 Using Thonny to Program a Device (Hello World)

15 CHAPTER - 6 SPI Interface Example

 (Interfacing to Other Circuits)

16 CHAPTER - 7 Related Products

Table of Contents

2 https://community.element14.com/learn/publications/ebooks/

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF
https://www.raspberrypi.org/

element14 is a Community of over 800,000 makers, professional engineers, electronics enthusiasts, and

everyone in between. Since our beginnings in 2009, we have provided a place to discuss electronics,

get help with your designs and projects, show off your skills by building a new prototype, and much

more. We also offer online learning courses such as our Essentials series, video tutorials from element14

Presents, and electronics competitions with our Design Challenges.

The RP2040 is making a big impact on the world of electronics. The RP2040 is the first microcontroller

from Raspberry Pi. It’s versatile, powerful, and power-efficient, making it suitable for a variety of

applications, including controlling battery-powered devices. In this eBook, we’ll walk you through setting

up an IDE that works with the RP2040, as well as how to program a variety of simple applications on it

using MicroPython.

element14 Community Team

Getting Started with the RP2040

3https://community.element14.com/learn/publications/ebooks/

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

4 https://community.element14.com/learn/publications/ebooks/

CHAPTER - 1 Introduction

The RP2040 was first released in the beginning of 2021. It brought with it a lot of excitement, being that

it was the first silicon device created by the Raspberry Pi Foundation. Unlike the Raspberry Pis that are

meant to run an operating system, the RP2040 is a microcontroller meant to run smaller, standalone

programs. It is a device that is comparable to the Arduino and ESP microcontrollers that have also become

very popular. Since the Raspberry Pi requires an operating system to run, it has many additional tasks to

handle in addition to running any code to control GPIO or external devices. Microcontrollers are much

lower power and less costly devices making them more suitable for interfacing with sensors and battery

powered applications.

The RP2040 is being manufactured from TSMC using a 40nm process. This is an older process that

also allows the device to be relatively low cost.

The RP2040 can be programmed using MicroPython, C/C++, or even assembly language. Like

other microcontrollers, the firmware must be written on a computer, compiled, and then loaded onto the

device. Some key features of the device include the following:

• Dual ARM Cortex-M0+ that runs at 133MHz

• 264kB on-chip SRAM

• Support for up to 16MB of external flash

• DMA controller

• Interpolator and integer divider peripherals

• Two integrated PLLs for USB and core clock generation

• 30 GPIO, with 4 available ADCs

• Peripherals including:

• 2 UARTs

• 2 SPI controllers

• 2 I2C controllers

• 16 PWM channels

• USB 1.1 controller and PHY, with host and device support

• 8 PIO state machines

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF
https://www.raspberrypi.org/
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
https://www.raspberrypi.com/documentation/microcontrollers/rp2040.html

5https://community.element14.com/learn/publications/ebooks/

Figure 1. RP2040 block diagram. Source: https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

The rest of this document will provide an overview on getting started with the RP2040. Examples will be

given that demonstrate how to connect the device to peripherals and how to program the device. An RP2040

comes standard on each Raspberry Pi Pico, so we’ll be using the Pico to help demonstrate the RP2040’s

functionality. Additionally, the Thonny IDE will be used to write firmware for the device using MicroPython.

The first section will go over installing Thonny and how to program a Raspberry Pi Pico, while the rest of the

sections will cover example use cases.

Before we can begin writing any programs for the RP2040, an IDE must be installed to write and compile

code. We will use the Thonny Python IDE since it is free, simple to use, and beginner friendly. Thonny can

be downloaded from https://thonny.org. The installation is available for Windows, Mac, and Linux machines

and will take approximately five minutes to install. For this section, only a Raspberry Pi Pico board and a

USB cable will be needed.

CHAPTER - 2 Using Thonny to Program a Device
(Hello World)

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://thonny.org

6 https://community.element14.com/learn/publications/ebooks/

Once the IDE is installed, we can open it and begin working towards our first “Hello World” example with the

Raspberry Pi Pico. The first time we power up the Pico, we’ll need to plug it into a computer while holding

down the BOOTSEL button. This puts the device in USB mass storage mode and enables us to flash the

MicroPython firmware to the device. The BOOTSEL button is the only one on the Pico board and can be

seen at the top left of the board in Figure 2.

After putting the device in mass storage mode, the MicroPython firmware can be installed. Clicking on the Python

version in the lower right-hand corner of the Thonny IDE will bring up a selection menu. This is shown in Figure 3.

Figure 2. The Raspberry Pi Pico Board featuring the RP2040

Figure 3. Installing MicroPython from Thonny using menu in lower right-hand corner

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

7https://community.element14.com/learn/publications/ebooks/

Figure 4. Additional window to choose MicroPython variant to install on RP2040

Figure 5. Additional window to choose MicroPython variant to install on RP2040

After choosing the option to install MicroPython an additional window will pop up. This window allows us to

choose the variant of MicroPython to install and the version. For this example, the MicroPython variant being

installed is for the Raspberry Pi Pico and upon making this selection, the version will auto-populate. We now

click on install and MicroPython will be loaded onto the device within a few moments. After installation, the

window can be closed. It is worth noting that we only need to install MicroPython on the device once. After

this, we can simply plug the device in and begin programming it with Python.

We are now able to use the shell to run Python directly on the RP2040. The shell is the small window at the bottom

of the Thonny IDE where Python commands can be input and run directly. If an error message is displayed, the

Raspberry Pi Pico may need to be reset by disconnecting the USB cable and reconnecting the device to the

computer. In addition, if the correct COM port is not automatically updated, it may need to be selected. This

is done by once again clicking in the area on the bottom of the right-hand corner of the shell where the Python

version and COM port is listed.

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

8 https://community.element14.com/learn/publications/ebooks/

As shown in Figure 5, we are able to test the functionality of the firmware and connectivity of the device by simply

running a print(‘Hello World”) into the shell. This code will run directly on the RP2040. Furthermore, we can now

test out the “Hello World” of microcontrollers by blinking the Pico’s on-board LED.

Using MicroPython, import a module named machine. This module contains specific functions for the RP2040

that allow us to easily control the device. Using the machine module, we will blink the on-board LED, which is

connected to GPIO 25. Entering the code as shown in Figure 6 directly into the shell will enable us to blink the

on-board LED.

Figure 6. Code showing how to blink the on-board LED through the shell

Turning the LED on is as simple as writing three lines of code to the device. After initializing the correct pin as an

output, we simply type a “1” to turn it on, or a “0” to turn it off.

Sending the RP2040 commands is quick and simple using the Thonny IDE and Pico. In the following sections, we

will write programs using the text editor in Thonny and load them onto the Pico device. When developing code for

an application or project this will be the general method used to program the device.

CHAPTER - 3 Turning an LED On/Off with a Button
(Basic Input/Output)

In this section, we will demonstrate how to use

GPIO for simple input and output. This is some of

the most basic functionality that can be done on a

microcontroller. For this specific example, we will

read the input to a pin that is connected to a switch.

If the button is pressed, we will turn on an LED,

otherwise, the LED will remain off. To build and test

this circuit, see the required components list. It also

helps to solder headers onto the Pico so that it can

be inserted into a breadboard for prototyping and

testing. Alternatively, a Pico can be purchased with

pre-installed headers.

Required Components List:

• Raspberry Pi Pico

• Breadboard

• Jumper wires

• USB Micro Cable

• LED and current limiting resistor

(~470 Ω)

• Tactile breadboard button

See Related Products section

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

9https://community.element14.com/learn/publications/ebooks/

It also helps to know the pinout on the Pico, so that we know where the GPIO pins are located. The pinout for the

Pico is shown in Figure 7.

Figure 7. Pinout diagram for the Raspberry Pi Pico board

For this example, we will connect the LED connected from GP21 to Ground through a current limiting resistor (~470

Ω), so that when we set GP21 high, the LED will turn on. In addition, we will connect the tactile button to GP14.

We add a pull up resistor (~4.99k) at the node connected to GP14, so that it will appear as a high voltage when the

button is not pressed. The other side of the button will connect directly to ground. As a result, when the button is

pressed, the voltage seen at the input of GP14 will go from high to low. The connections for this can be seen in

the diagram below.

Figure 8. Connections needed for basic input and output example

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

10 https://community.element14.com/learn/publications/ebooks/

With the hardware now connected, we can begin writing the code for the device. The code for this example is

shown in Figure 9. Two modules are required. First is the machine module, which allows us to define pins as

inputs or outputs and read or write to them. The second module we will import is called time; this is used to add

delays into the program.

After the modules are imported, the device should be initialized. GP21 is set as an output and GP14 as an input.

This is done in lines 4 and 5. Note that when defining a pin as an input there is an optional argument that can be

added to add an internal pull up or pull down on the pin. However, since we have the pull up added externally,

we can omit this argument. For the final part, an infinite loop is created that will continuously read the state of the

voltage on GP14 (line 7). If the button is pressed, the voltage will go low (0V). When this happens, we want to set

the led.value to 1 (or high). This is shown in line 9. In all other circumstances, the output will be low and the LED

will be turned off. Note that a one second delay is added into the code after setting the LED high. This keeps the

LED from blinking sporadically and allows us to easily observe the LED turning on.

Figure 9. Code for basic input and output example

There are a couple of different ways to run the code on the Pico device. We can press the green button in the top

task bar (green circle with white arrow), or we can save the code directly onto the Pico by going to File at the top

left, then choosing Save as, and finally choosing the Raspberry Pi Pico as the target device. If the program is run

using the green button in the task bar, it will have to be explicitly stopped using the red stop button in the same

task bar before additional code can be loaded or the shell used. In addition, code run using the green run button

is not saved onto the Pico. To get the code to run after a power cycle the program must be saved onto the Pico

as “main.py.”

CHAPTER - 4 Communication with a Console
(Basic Networking)

The next example will cover how to work with a serial console over the USB connection on the Pico. A serial

console can be useful for debugging or controlling the Pico through your computer. For instance, if you want

to use your computer as the main method of communicating with the device, a serial console is an ideal

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

11https://community.element14.com/learn/publications/ebooks/

choice. If you are developing a project and want to print output to a screen for debugging, the serial console

is again an easy and simple way of doing so. There are many free options available, including PuTTY, Tera

Term, and Minicom.

For this example, we will use a serial console (Tera Term) to read in user input and turn on or off an LED

depending upon the user input. The Pico board alone can be used for this example since it has a single LED

on board that can be controlled. We can also use the same circuit as in the previous example, but without

the button. The hardware for this includes (See Related Products section):

• Breadboard

• Raspberry Pi Pico

• Jumper wires

• USB Micro Cable

• LED and current limiting resistor (~470 Ω)

For this example, we will use the same circuit as in the prior example without the button. This set is

depicted in Figure 10.

Two additional modules will be used (machine and time are still required): the sys module and the select

module. Both modules are subsets of the CPython module and make working with the serial console

simple. The code written for this example is shown in Figure 11.

We start by importing the required modules. Next, we define the LED pin and set it as an output. The infinite

loop comes next; this ensures that the program will continue to run for as long as the Pico is powered on.

Within the infinite loop is an additional while loop that waits for user input from the serial console using the

sys and select libraries. Note that in this specific example, we are only reading in one character. There are

additional ways to read in all characters; however, that is beyond the scope of this example.

Any input read in from the serial console is represented by a hexadecimal number. This hexadecimal number

represents an ASCII value. To correctly decode it, we first need to encode it using UTF-8 and then decode

it as an ASCII character. This will save a string into a variable (line 15) that we can use as needed.

Figure 10. Circuit used for serial console communication example

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en
https://help.ubuntu.com/community/Minicom

12 https://community.element14.com/learn/publications/ebooks/

Figure 11. Code written to communicate with serial console and turn on or off an LED

Figure 12. Serial terminal used to communicate and control an LED through the Pico

The rest of the code consists of simple if and else

statements that compare the user input value to a “1”

and a “0”, turning the LED on or off correspondingly.

After saving this code to a Pico device, we can

then open a terminal in order to control the LED. An

example of the control using Tera Term is illustrated

in Figure 12.

As mentioned before, the serial terminal can help

when working through a design or with debugging.

For example, when working with a temperature

sensor, we can print the calculated temperature to

the screen to determine if the equations are accurate

before integrating it into a larger system. Furthermore,

when designing a circuit that incorporates an analog-

digital converter (ADC) or digital-analog converter

(DAC), having real time feedback and control through

a computer can have major benefits.

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

13https://community.element14.com/learn/publications/ebooks/

Figure 13. Circuit connections for servo control example

CHAPTER - 5 Controlling a Servo (Motor Control)

This example will cover how to

control a servo using a pulse width

modulated (PWM) output from

the Pico device. Servos are used

in many applications, especially

robotics. They are made up of

three core key pieces that include

a DC motor, a controller circuit,

and a potentiometer or some

other sort of device for feedback.

The DC motor drives gears that

determine the speed, torque,

and position of the output shaft.

Almost all hobbyist servo motors

have a 3-pin header for power

and control. Generally, there are

a black and red wire for ground

and DC power, respectively, and

an additional wire that may be

yellow or white for controlling

the position. Servos come in

many shapes, sizes, and power

handling capabilities; thus, it is

important to make sure the device

is compatible with the Pico before

using. The hardware needed for

this example is as follows:

• Breadboard

• Raspberry Pi Pico

• Jumper wires

• USB Micro Cable

• Hobby Servo

See Related Products section

To begin, we connect the servo

as shown in Figure 13. We will

once again use GP21 for our

control pin, although any of the

pins can support a PWM output.

A PWM signal is a digital signal

that changes states from high

to low. The percentage of time

the signal is high over its period

is known as the duty cycle.

Thus, a 50% duty cycle signal

will spend half of the time high

and half of the time low. As a

result, the average DC power

output from the pin is half the

rail voltage. Taking advantage

of this technique, we can use a

PWM signal to produce a variable

voltage output.

It is important to understand how a servo is controlled before jumping in. All servos will have a minimum and

maximum pulse width which they will respond to. Outside of this range, they will not respond and may stop

holding their position. Different servos will have different specifications, but for this example, let’s assume

this range: a minimum pulse width is approximately 620 µs, which will set it at a 0° angle, a maximum pulse

width is 2420 µs, which will set it at a 180° angle, and to achieve a 90° angle a pulse width of 1520 µs is

needed. Figure 14 helps visualize the PWM signal and pulse width. Note that 20ms is the period of a 50Hz

frequency which is what we will set the PWM frequency to.

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

14 https://community.element14.com/learn/publications/ebooks/

Figure 14. PWM waveform

Figure 15. Code for controlling a servo example

Now that we understand what a PWM signal is and how we can use it to control a servo, we can begin

writing the code. The code for this example is shown in Figure 15.

In the code for this example, we simply initialize the Pico

and set up an infinite loop that will change the position

of the servo every two seconds. To initialize the device,

we first need to import the machine and time libraries.

We then define the pin that we will use to control the

servo (GP21). After that, we create a servo object that

will use a PWM output and define the PWM frequency as

50Hz (lines 5 and 6). The next steps consist of creating

the infinite while loop, setting the servo positions, and

adding a delay. To change the duty cycle or pulse width

the duty_ns function is used. This allows us to change

the duty cycle by specifying a desired pulse width in

nanoseconds. The pulse width for specific settings of

the servo can be found in the servo’s datasheet.

After loading the code onto the Pico device, the servo

will change locations every two seconds while the

device is powered on. Generally, some sort of input

will be read to control the servo position. This can be

a controller, potentiometer, or depending upon the end

application, a sensor.

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

15https://community.element14.com/learn/publications/ebooks/

When working with more complex integrated circuits,

usually some standard communication interface is

utilized. For instance, when controlling an LED or

switch, only a GPIO may be required; however, some

circuits can output data or may have various settings

that need to be configured for expected operation. In

these cases, an SPI, I2C, or even a UART interface

may be used. Learning how to work with these

various interfaces can greatly increase the types of

circuits you can utilize for your designs.

The RP2040 has built-in communication interfaces

that make communication through these interfaces

simple. For this example, we will demonstrate

generic code to create a simple SPI interface in the

RP2040 using a Raspberry Pi Pico. There will be no

hardware required for this example.

The only module required to import for a SPI interface

is the machine module. Using the machine module,

we can set up the clock, transmit, receive, and chip

select pins needed for a SPI interface. Next, we need

to initialize the SPI interface and write a function to

handle the data transfer. The code for this can be

seen in Figure 16.

Figure 16. Code for generating a SPI interface

CHAPTER - 6 SPI Interface Example (Interfacing to
Other Circuits)

First, we import the machine module and then begin

initializing the SPI interface by creating variables for

the pins to be used. Note that for this simple SPI

initialization, the proper pins must be selected. The

pinout diagrams for the Pico as well as the RP2040

has them identified and they can also be found in

Figure 7 of this eBook. Lines 8 and 9 are the final

lines needed for initializing the SPI. In line 8 the baud

rate (or clock rate) of the SPI interface is selected,

in addition to the polarity and phase. These will

vary depending on the device being used, but the

polarity describes the idle state of the clock when no

transaction is occurring, and phase tells us whether

data begins to be captured on the rising or falling

edge of the clock.

The last part of the code (lines 11 – 15) creates a

function that can then be called to read or write to

the device. In the function, cs (chip select) is pulled

low, and the write transaction occurs, after which

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF

16 https://community.element14.com/learn/publications/ebooks/

cs is pulled back high to complete the SPI transaction. If you are trying to read from the device, this

function will still work. The spi.write_readinto command will return values for a read transaction. Thus,

to communicate with a device using the example code given, we would only need to the call the function

defined, passing the needed data. The data format used by SPI interfaces usually includes a read/write bit,

address, and data (if writing to the device). For reading from a device, the data will only consist of a read/

write bit and address to be read.

Overall, this eBook has introduced the RP2040 microcontroller. There are many additional areas to explore

with the RP2040; these simple examples are just the beginning of what is possible.

CHAPTER - 7 Related Products

Raspberry Pi Pico Breadboard Jumper Wires

USB Micro Cable LED Bulb Current Limiting
470 Ω Resistor

Tactile Breadboard
Button

Pull up 4.99 kΩ
Resistor

Hobby Servo

https://community.element14.com/learn/publications/ebooks?CMP=RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=3643332&nsku=22AJ1097&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=2527467&nsku=99W1760&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=2770338&nsku=24AC5053&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=2468268&nsku=58AC7773&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=1855508&nsku=04R6674&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=1127952&nsku=58K4979&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=2079613&nsku=	63W1738&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=1903848&nsku=97M9506&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF
https://referral.element14.com/OrderCodeView?fsku=3974098&nsku=33AK3645&COM=e14c-referral-cmty-handler-RP2040-EBOOK-PDF&CMP=e14c-RP2040-EBOOK-PDF

© 2023 by Newark Corporation, Chicago, IL 60606. All rights reserved. No portion of this publication, whether in whole or in part, can be reproduced without the express written consent of
Newark Corporation. Newark® is a registered trademark of Farnell Corp. All other registered and/or unregistered trademarks displayed in this publication constitute the intellectual property of
their respective holders. Printed in the U.S.A. WF-3398010

Facebook.com/e14Community
Twitter.com/e14Community

300 S. Riverside Plaza, Suite 2200
Chicago, IL 60606

https://community.element14.com/

See more about Raspberry Pi on the element14 Community.

https://community.element14.com/?CMP=RP2040-EBOOK-PDF
https://community.element14.com/?CMP=RP2040-EBOOK-PDF
https://community.element14.com/?CMP=RP2040-EBOOK-PDF
https://community.element14.com/products/raspberry-pi?CMP=RP2040-EBOOK-PDF
https://community.element14.com/products/raspberry-pi?CMP=RP2040-EBOOK-PDF
https://www.facebook.com/e14community
https://www.facebook.com/e14community
https://www.youtube.com/@element14presents
https://twitter.com/E14Community
https://twitter.com/E14Community
https://www.instagram.com/e14community
https://www.linkedin.com/company/farnell-global/

