DUAL CURRENT SOURCE/CURRENT SINK

FEATURES

- COMPLETELY FLOATING:

No Power Supply or Ground Connections

- HIGH ACCURACY: $100 \mu \mathrm{~A} \pm 0.5 \%$
- LOW TEMPERATURE COEFFICIENT: $\pm 25 p p m /{ }^{\circ} \mathrm{C}$
- WIDE VOLTAGE COMPLIANCE: 2.5 V to 40 V
- ALSO INCLUDES CURRENT MIRROR

DESCRIPTION

The REF200 combines three circuit building-blocks on a single monolithic chip-two $100 \mu \mathrm{~A}$ current sources and a current mirror. The sections are dielectrically isolated, making them completely independent. Also, since the current sources are twoterminal devices, they can be used equally well as current sinks. The performance of each section is individually measured and laser-trimmed to achieve high accuracy at low cost.
The sections can be pin-strapped for currents of $50 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 200 \mu \mathrm{~A}, 300 \mu \mathrm{~A}$ or $400 \mu \mathrm{~A}$. External circuitry can be used to obtain virtually any current. These and many other circuit techniques are shown in the Applications section of this Data Sheet.
The REF200 is available in plastic 8 -pin mini-DIP and SOIC packages.

APPLICATIONS

- SENSOR EXCITATION
- BIASING CIRCUITRY
- OFFSETTING CURRENT LOOPS
- LOW Voltage references
- CHARGE-PUMP CIRCUITRY
- HYBRID MICROCIRCUITS

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITION	REF200AP, AU			UNITS
		MIN	TYP	MAX	
CURRENT SOURCES Current Accuracy Current Match Temperature Drift Output Impedance Noise Voltage Compliance (1\%) Capacitance	$\begin{gathered} \text { Specified Temp Range } \\ 2.5 \mathrm{~V} \text { to } 40 \mathrm{~V} \\ 3.5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ \text { BW }=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ \mathrm{f}=10 \mathrm{kHz} \\ \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{gathered}$	$\begin{gathered} 20 \\ 200 \end{gathered}$	± 0.25 ± 0.25 25 100 500 1 20 See Curves 10	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ M Ω $\mathrm{M} \Omega$ nAp-p $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ pF
CURRENT MIRROR Gain Temperature Drift Impedance (output) Nonlinearity Input Voltage Output Compliance Voltage Frequency Response (-3dB)	I = 100 $\mu \mathrm{A}$ Unless Otherwise Noted 2 V to 40 V $\mathrm{I}=0 \mu \mathrm{~A}$ to $250 \mu \mathrm{~A}$ Transfer	$\begin{gathered} 0.995 \\ 40 \end{gathered}$	1 25 100 0.05 1.4 See Curves 5	1.005	$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \mathrm{M} \Omega \\ \% \\ \mathrm{~V} \\ \mathrm{MHz} \end{gathered}$
TEMPERATURE RANGE Specification Operating Storage		$\begin{aligned} & -25 \\ & -40 \\ & -40 \end{aligned}$		$\begin{aligned} & +85 \\ & +85 \\ & +125 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

PIN CONFIGURATION

Top View

DIP/SOIC

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Applied Voltage	-6 V to +40 V
Reverse Current	.. $-350 \mu \mathrm{~A}$
Voltage Between Any Two Sections.	. $\pm 80 \mathrm{~V}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
(SOIC 3s)	$\ldots . .+260^{\circ} \mathrm{C}$

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER $^{(1)}$	TEMPERATURE RANGE
REF200AP	8-Pin Plastic DIP	006	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
REF200AU	8-Pin SOIC	182	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Grade designation "A" may not be marked. Absence of grade designation indicates A grade.

TYPICAL PERFORMANCE CURVES

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, unless otherwise noted.

CURRENT SOURCE

CURRENT SOURCE
CURRENT NOISE $(0.1 \mathrm{~Hz}$ to 10 Hz$)$

CURRENT SOURCE
REVERSE CURRENT vs REVERSE VOLTAGE

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}$, unless otherwise noted.

APPLICATIONS INFORMATION

The three circuit sections of the REF200 are electrically isolated from one another using a dielectrically isolated fabrication process. A substrate connection is provided (pin 6), which is isolated from all circuitry. This pin should be connected to a defined circuit potential to assure rated DC performance. The preferred connection is to the most negative constant potential in your system. In most analog systems this would be $-\mathrm{V}_{\mathrm{s}}$. For best AC performance, leave pin 6 open and leave unused sections unconnected.
Drift performance is specified by the "box method," as illustrated in the Current vs Temperature plot of the typical performance curves. The upper and lower current extremes measured over temperature define the top and bottom of the box. The sides are determined by the specified temperature range of the device. The drift of the unit is the slope of the diagonal-typically $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
If the current sources are subjected to reverse voltage, a protection diode may be required. A reverse voltage circuit model of the REF200 is shown in the Reverse Current vs Reverse Voltage curve. If reverse voltage is limited to less than 6 V or reverse current is limited to less than $350 \mu \mathrm{~A}$, no protection circuitry is required. A parallel diode (Figure 2a) will protect the device by limiting the reverse voltage across the current source to approximately 0.7 V . In some applications, a series diode may be preferable (Figure 2b) because it allows no reverse current. This will, however, reduce the compliance voltage range by one diode drop.
Applications for the REF200 are limitless. Application Bulletin AB-165 shows additional REF200 circuits as well as other related current source techniques. A collection of circuits is shown to illustrate some techniques. Also, see AB-165A.

FIGURE 1. Simplified Circuit Diagram.

FIGURE 2. Reverse Voltage Protection.

FIGURE 3. $50 \mu \mathrm{~A}$ Current Source.

FIGURE $4.200 \mu \mathrm{~A}, 300 \mu \mathrm{~A}$, and $400 \mu \mathrm{~A}$ Floating Current Sources.

FIGURE 5. $50 \mu \mathrm{~A}$ Current Sinks.

FIGURE 6. Improved Low-Voltage Compliance.

FIGURE 7. $100 \mu \mathrm{~A}$ Current Source-80V Compliance.

FIGURE 8. FET Cascode Circuits.

FIGURE 9. Op Amp Offset Adjustment Circuits.

(a)

NOTE: (1) Burr Brown ${ }^{\circledR}$ OPA602 or OPA128
EXAMPLES

\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$			$\mathbf{I}_{\text {out }}$
100Ω	$10 \mathrm{M} \Omega$	1 nA		
$10 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	$1 \mu \mathrm{~A}$		
$10 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	1 mA		

(e)

FIGURE 10. Adjustable Current Sources.

FIGURE 11. RTD Excitation With Three Wire Lead Resistance Compensation.

Frequency $=1 / 4 \mathrm{RC}(\mathrm{Hz})$
Frequency $=25 / \mathrm{C}(\mathrm{Hz})$
(C is in $\mu \mathrm{F}$ and $\mathrm{R}=10 \mathrm{k} \Omega$)

FIGURE 12. Precision Triangle Waveform Generator.

FIGURE 13. Precision Duty-Cycle Modulator.

FIGURE 14. Low Noise Current Sink.

FIGURE 15. Low Noise Current Sink with Compliance Below Ground.

(a) Regulation (15 V to $30 \mathrm{~V}=0.00003 \% / \mathrm{V}(10 \mathrm{G} \Omega$)

(a) Regulation (15 V to $30 \mathrm{~V}=0.000025 \% / \mathrm{V}(10 \mathrm{G} \Omega)$

FIGURE 16. Floating $300 \mu \mathrm{~A}$ and $400 \mu \mathrm{~A}$ Cascoded Current Sources.

FIGURE 17. Rate Limiter.

FIGURE 18. 25mA Floating Current Source.

FIGURE 19. Dead-Band Circuit.

FIGURE 20. Double Dead-Band Circuit.

FIGURE 21. Low-Voltage Reference.

FIGURE 22. Voltage Reference.

FIGURE 23. Bipolar Limiting Circuit.

FIGURE 24. Limiting Circuit.

FIGURE 25. Window Comparator.

FIGURE 26. Instrumentation Amplifier with Compliance to $-V_{S}$.

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
REF200AP	OBSOLETE	PDIP	P	8	
REF200AU	ACTIVE	SOIC	D	8	100
REF200AU/2K5	ACTIVE	SOIC	D	8	2500

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

