## MC33201, MC33202, MC33204

## Rail-to-Rail Operational Amplifiers

The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages $( \pm 0.9 \mathrm{~V})$ yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

- Low Voltage, Single Supply Operation $(+1.8 \mathrm{~V}$ and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current ( $\mathrm{I}_{\mathrm{SC}}=80 \mathrm{~mA}$, Typ)
- Low Supply Current ( $\mathrm{I}_{\mathrm{D}}=0.9 \mathrm{~mA}$, Typ)
- $600 \Omega$ Output Drive Capability
- Extended Operating Temperature Ranges $\left(-40^{\circ}\right.$ to $+105^{\circ} \mathrm{C}$ and $-55^{\circ}$ to $\left.+125^{\circ} \mathrm{C}\right)$
- Typical Gain Bandwidth Product $=2.2 \mathrm{MHz}$

ON Semiconductor
http://onsemi.com


ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 11 of this data sheet.

PIN CONNECTIONS

CASE 626
Inputs

CASE 751/846A

CASE 646/751A/948G



Figure 1. Circuit Schematic
(Each Amplifier)

MC33201, MC33202, MC33204

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$ ) | $\mathrm{V}_{\mathrm{S}}$ | +13 | V |
| Input Differential Voltage Range | $V_{\text {IDR }}$ | Note 1. | V |
| Common Mode Input Voltage Range (Note 2.) | $\mathrm{V}_{\mathrm{CM}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V} \end{aligned}$ | V |
| Output Short Circuit Duration | $\mathrm{t}_{\mathrm{s}}$ | Note 3. | sec |
| Maximum Junction Temperature | TJ | +150 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\text {stg }}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ | Note 3. | mW |

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

| Characteristic | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Input Offset Voltage |  |  |  | mV |
| $\mathrm{V}_{10}($ max $)$ |  |  |  |  |
| MC33201 MC33202 | $\begin{gathered} \pm 8.0 \\ \pm 10 \end{gathered}$ | $\begin{gathered} \pm 8.0 \\ \pm 10 \end{gathered}$ | $\begin{array}{r}  \pm 6.0 \\ \pm 8.0 \end{array}$ |  |
| MC33204 | $\pm 12$ | $\pm 12$ | $\pm 10$ |  |
| Output Voltage Swing |  |  |  |  |
| $V_{\text {OH }}\left(R_{L}=10 \mathrm{k} \Omega\right)$ | 1.9 | 3.15 | 4.85 | $\mathrm{V}_{\text {min }}$ |
| $\mathrm{V}_{\text {OL }}\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$ | 0.10 | 0.15 | 0.15 | $V_{\text {max }}$ |
| Power Supply Current per Amplifier ( $\mathrm{I}_{\mathrm{D}}$ ) | 1.125 | 1.125 | 1.125 | mA |

Specifications at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ are guaranteed by the 2.0 V and 5.0 V tests. $\mathrm{V}_{\mathrm{EE}}=\mathrm{Gnd}$.
DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Characteristic | Figure | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```Input Offset Voltage ( \(\mathrm{V}_{\mathrm{CM}} 0 \mathrm{~V}\) to \(0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}} 1.0 \mathrm{~V}\) to 5.0 V ) MC33201: \(\quad T_{A}=+25^{\circ} \mathrm{C}\) MC33201: \(T_{A}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\) MC33201V: \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) MC33202: \(T_{A}=+25^{\circ} \mathrm{C}\) MC33202: \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\) MC33202V: \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\) MC33204: \(T_{A}=+25^{\circ} \mathrm{C}\) MC33204: \(\mathrm{T}_{\mathrm{A}}=-40^{\circ}\) to \(+105^{\circ} \mathrm{C}\) MC33204V: \(\mathrm{T}_{\mathrm{A}}=-55^{\circ}\) to \(+125^{\circ} \mathrm{C}\)``` | 3 | $\left\|\mathrm{V}_{10}\right\|$ |  | - - - - - - - - | $\begin{gathered} 6.0 \\ 9.0 \\ 13 \\ 8.0 \\ 11 \\ 14 \\ 10 \\ 13 \\ 17 \end{gathered}$ | mV |
| Input Offset Voltage Temperature Coefficient ( $\mathrm{R}_{\mathrm{S}}=50 \Omega$ ) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | 4 | $\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$ |  | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\begin{aligned} & \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | 5, 6 | $\left\|I_{1 B}\right\|$ |  | $\begin{gathered} 80 \\ 100 \end{gathered}$ | $\begin{aligned} & 200 \\ & 250 \\ & 500 \end{aligned}$ | nA |
| $\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | - | $\left\|I_{10}\right\|$ |  | $\begin{gathered} 5.0 \\ 10 \end{gathered}$ | $\begin{gathered} 50 \\ 100 \\ 200 \end{gathered}$ | nA |
| Common Mode Input Voltage Range | - | $V_{\text {ICR }}$ | $\mathrm{V}_{\mathrm{EE}}$ | - | $\mathrm{V}_{\mathrm{CC}}$ | V |

1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV .
3. Power dissipation must be considered to ensure maximum junction temperature ( $\mathrm{T}_{\mathrm{J}}$ ) is not exceeded. (See Figure 2)

DC ELECTRICAL CHARACTERISTICS (cont.) ( $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Characteristic | Figure | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=600 \Omega \end{aligned}$ | 7 | Avol | $\begin{aligned} & 50 \\ & 25 \end{aligned}$ | $\begin{aligned} & 300 \\ & 250 \end{aligned}$ | - | kV/V |
| $\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{I D}= \pm 0.2 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{L}=600 \Omega \\ & R_{L}=600 \Omega \end{aligned}$ | 8, 9, 10 | $\mathrm{V}_{\mathrm{OH}}$ <br> $V_{\text {OL }}$ <br> $V_{\mathrm{OH}}$ <br> $\mathrm{V}_{\mathrm{OL}}$ | $\begin{gathered} 4.85 \\ - \\ 4.75 \end{gathered}$ | $\begin{aligned} & 4.95 \\ & 0.05 \\ & 4.85 \\ & 0.15 \end{aligned}$ | $\begin{gathered} - \\ 0.15 \\ - \\ 0.25 \end{gathered}$ | V |
| Common Mode Rejection ( $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to 5.0 V ) | 11 | CMR | 60 | 90 | - | dB |
| Power Supply Rejection Ratio $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V} / \mathrm{Gnd}$ to $3.0 \mathrm{~V} /$ Gnd | 12 | PSRR | 500 | 25 | - | $\mu \mathrm{V} / \mathrm{V}$ |
| Output Short Circuit Current (Source and Sink) | 13, 14 | Isc | 50 | 80 | - | mA |
| $\begin{aligned} & \text { Power Supply Current per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$ | 15 | ID | - | $\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$ | $\begin{aligned} & 1.125 \\ & 1.125 \\ & \hline \end{aligned}$ | mA |

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\right.$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

| Characteristic | Figure | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slew Rate $\left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.0 \mathrm{~V} \text { to }+2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{V}}=+1.0\right)$ | 16, 26 | SR | 0.5 | 1.0 | - | V/us |
| Gain Bandwidth Product ( $\mathrm{f}=100 \mathrm{kHz}$ ) | 17 | GBW | - | 2.2 | - | MHz |
| Gain Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{L}=0 \mathrm{pF}$ ) | 20, 21, 22 | $\mathrm{A}_{\mathrm{M}}$ | - | 12 | - | dB |
| Phase Margin ( $\mathrm{R}_{\mathrm{L}}=600 \Omega, C_{L}=0 \mathrm{pF}$ ) | 20, 21, 22 | $\emptyset_{M}$ | - | 65 | - | Deg |
| Channel Separation ( $f=1.0 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{A}_{V}=100$ ) | 23 | CS | - | 90 | - | dB |
| Power Bandwidth ( $\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, $\mathrm{THD} \leq 1 \%$ ) |  | $\mathrm{BW}_{\mathrm{P}}$ | - | 28 | - | kHz |
| $\begin{aligned} & \text { Total Harmonic Distortion }\left(R_{L}=600 \Omega, V_{O}=1.0 V_{p p}, A_{V}=1.0\right) \\ & \begin{array}{l} f=1.0 \mathrm{kHz} \\ f=10 \mathrm{kHz} \end{array} \end{aligned}$ | 24 | THD | - | $\begin{aligned} & 0.002 \\ & 0.008 \end{aligned}$ | - | \% |
| Open Loop Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.0 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=10\right)$ |  | $\left\|z_{0}\right\|$ | - | 100 | - | $\Omega$ |
| Differential Input Resistance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ) |  | $\mathrm{R}_{\text {in }}$ | - | 200 | - | k $\Omega$ |
| Differential Input Capacitance ( $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ ) |  | $\mathrm{C}_{\text {in }}$ | - | 8.0 | - | pF |
| $\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(R_{S}=100 \Omega\right) \\ & f=10 \mathrm{~Hz} \\ & f=1.0 \mathrm{kHz} \end{aligned}$ | 25 | $\mathrm{e}_{\mathrm{n}}$ | - | $\begin{aligned} & 25 \\ & 20 \end{aligned}$ | - | $\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$ |
| Equivalent Input Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$ | 25 | $\mathrm{i}_{n}$ | - | $\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$ | - | $\frac{\mathrm{pA} /}{\sqrt{\mathrm{Hz}}}$ |



Figure 2. Maximum Power Dissipation versus Temperature


Figure 4. Input Offset Voltage Temperature Coefficient Distribution


Figure 6. Input Bias Current versus Common Mode Voltage


Figure 3. Input Offset Voltage Distribution


Figure 5. Input Bias Current versus Temperature


Figure 7. Open Loop Voltage Gain versus Temperature


Figure 8. Output Voltage Swing
versus Supply Voltage


Figure 10. Output Voltage versus Frequency


Figure 12. Power Supply Rejection versus Frequency


Figure 9. Output Saturation Voltage versus Load Current


Figure 11. Common Mode Rejection versus Frequency


Figure 13. Output Short Circuit Current versus Output Voltage


Figure 14. Output Short Circuit Current versus Temperature


Figure 16. Slew Rate versus Temperature


Figure 18. Voltage Gain and Phase versus Frequency


Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load


Figure 17. Gain Bandwidth Product versus Temperature


Figure 19. Voltage Gain and Phase versus Frequency


Figure 20. Gain and Phase Margin versus Temperature


Figure 22. Gain and Phase Margin versus Capacitive Load


Figure 24. Total Harmonic Distortion versus Frequency


Figure 21. Gain and Phase Margin versus Differential Source Resistance


Figure 23. Channel Separation versus Frequency


Figure 25. Equivalent Input Noise Voltage and Current versus Frequency

## DETAILED OPERATING DESCRIPTION

## General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of $2.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V and ground.

Since the common mode input voltage range extends from $\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}}$, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

## Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than $\mathrm{V}_{\mathrm{EE}}$, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive $600 \Omega$ loads. Because of this high output current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature.


Figure 28. Large Signal Transient Response

## MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.


ORDERING INFORMATION

| Operational Amplifier Function | Device | Operating Temperature Range | Package | Shipping |
| :---: | :---: | :---: | :---: | :---: |
| Single | MC33201D | $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$ | SO－8 | 98 Units／Rail |
|  | MC33201DR2 |  | SO－8 | 2500 Units／Tape \＆Reel |
|  | MC33201P |  | Plastic DIP | 50 Units／Rail |
|  | MC33201VD | $\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ | SO－8 | 98 Units／Rail |
| Dual | MC33202D | $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$ | SO－8 | 98 Units／Rail |
|  | MC33202DR2 |  | SO－8 | 2500 Units／Tape \＆Reel |
|  | MC33202DMR2 |  | Micro－8 | 4000 Units／Tape \＆Reel |
|  | MC33202P |  | Plastic DIP | 50 Units／Rail |
|  | MC33202VD | $\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ | SO－8 | 98 Units／Rail |
|  | MC33202VDR2 |  | SO－8 | 2500 Units／Tape \＆Reel |
|  | MC33202VP |  | Plastic DIP | 50 Units／Rail |
| Quad | MC33204D | $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$ | SO－14 | 55 Units／Rail |
|  | MC33204DR2 |  | SO－14 | 2500 Units／Tape \＆Reel |
|  | MC33204DTB |  | TSSOP－14 | 96 Units／Rail |
|  | MC33204DTBR2 |  | TSSOP－14 | 2500 Units／Tape \＆Reel |
|  | MC33204P |  | Plastic DIP | 25 Units／Rail |
|  | MC33204VD | $\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ | SO－14 | 55 Units／Rail |
|  | MC33204VDR2 |  | SO－14 | 2500 Units／Tape \＆Reel |
|  | MC33204VP |  | Plastic DIP | 25 Units／Rail |

MARKING DIAGRAMS

| SO－8 <br> D SUFFIX CASE 751 | $\begin{gathered} \text { SO-8 } \\ \text { VD SUFFIX } \\ \text { CASE } 751 \end{gathered}$ |
| :---: | :---: |
|  |  |
| $\begin{gathered} \text { SO-14 } \\ \text { D SUFFIX } \\ \text { CASE 751A } \end{gathered}$ | $\begin{aligned} & \text { SO-14 } \\ & \text { VD SUFFIX } \\ & \text { CASE 751A } \end{aligned}$ |
| $14$ | $14$ |
| MC33204D <br> AWLYWW | MC33204VD <br> AWLYWW |
| पபロロロロロ | पபロபロロロ |


PDIP－8
VP SUFFIX
CASE 626
8
Micro－8
DM SUFFIX
CASE 846A

CASE 846A
${ }^{8}$ 朋朋
？？？？

0
${ }_{1}$ 目目目


## PACKAGE DIMENSIONS

PDIP-8
P, VP SUFFIX
CASE 626-05


NOTES:

1. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANS 3. DIMENSIONING

|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | IIN | MAX | MIN | MAX |
| A | 9.40 | 10.16 | 0.370 | 0.400 |
| B | 6.10 | 6.60 | 0.240 | 0.260 |
| C | 3.94 | 4.45 | 0.155 | 0.175 |
| D | 0.38 | 0.51 | 0.015 | 0.020 |
| F | 1.02 | 1.78 | 0.040 | 0.070 |
| G | 2.54 BSC | 0.100 BSC |  |  |
| H | 0.76 | 1.27 | 0.030 | 0.050 |
| J | 0.20 | 0.30 | 0.008 | 0.012 |
| K | 2.92 | 3.43 | 0.115 | 0.135 |
| L | 7.62 BSC | 0 | 0.300 BSC |  |
| M | --- | $10^{\circ}$ | --- | $10^{\circ}$ |
| N | 0.76 | 1.01 | 0.030 | 0.040 |

SO-8
D, VD SUFFIX
CASE 751-06
ISSUE T


NOTES

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
DIMENSIONS ARE IN MILLIMETER
2. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIMENSION B DOES NOT INCLUDE DAMB
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

| DIM | MILLIMETERS |  |
| :---: | :---: | :---: |
|  | MIN | MAX |
| A | 1.35 | 1.75 |
| A1 | 0.10 | 0.25 |
| B | 0.35 | 0.49 |
| C | 0.19 | 0.25 |
| D | 4.80 | 5.00 |
| E | 3.80 | 4.00 |
| e | 1.27 |  |
| HSC |  |  |
| H | 5.80 | 6.20 |
| $\mathbf{h}$ | 0.25 | 0.50 |
| L | 0.40 | 1.25 |
| $\boldsymbol{\theta}$ | $0^{\circ}$ | $7^{\circ}$ |

## PACKAGE DIMENSIONS


SO-14
D, VD SUFFIX
CASE 751A-03
ISSUE F


## PACKAGE DIMENSIONS



MC33201, MC33202, MC33204

## PACKAGE DIMENSIONS

Micro-8
DM SUFFIX
CASE 846A-02
ISSUE E


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A DOES NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
3. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

|  | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 2.90 | 3.10 | 0.114 | 0.122 |
| B | 2.90 | 3.10 | 0.114 | 0.122 |
| C | --- | 1.10 | --- | 0.043 |
| D | 0.25 | 0.40 | 0.010 |  |
| G | 0.65 BSC | 0.026 |  | BSC |
| H | 0.05 | 0.15 | 0.002 | 0.006 |
| J | 0.13 | 0.23 | 0.005 | 0.009 |
| K | 4.75 | 5.05 | 0.187 | 0.199 |
| L | 0.40 | 0.70 | 0.016 | 0.028 |

ON Semiconductor and $\square$ are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

## PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK

## CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong \& Singapore: 001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

