Rail-to-Rail Operational Amplifiers

The MC33201/2/4 family of operational amplifiers provide rail—to—rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail—to—rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (\pm 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

- Low Voltage, Single Supply Operation (+1.8 V and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current ($I_{SC} = 80 \text{ mA}, \text{Typ}$)
- Low Supply Current (I_D = 0.9 mA, Typ)
- 600 Ω Output Drive Capability
- Extended Operating Temperature Ranges (-40° to +105°C and -55° to +125°C)
- Typical Gain Bandwidth Product = 2.2 MHz

http://onsemi.com

PDIP-8 P, VP SUFFIX CASE 626

SO-8 D, VD SUFFIX CASE 751

Micro-8 DM SUFFIX CASE 846A

PDIP-14 P, VP SUFFIX CASE 646

SO-14 D, VD SUFFIX CASE 751A

TSSOP-14 DTB SUFFIX CASE 948G

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

PIN CONNECTIONS

CASE 646/751A/948G Output 1 1 14 Output 4 11 V_{EE} 8 Output 3 Output 2 (Quad, Top View)

CASE 751/846A

Figure 1. Circuit Schematic (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to V _{EE})	Vs	+13	V
Input Differential Voltage Range	V _{IDR}	Note 1.	V
Common Mode Input Voltage Range (Note 2.)	V _{CM}	V _{CC} + 0.5 V to V _{EE} – 0.5 V	V
Output Short Circuit Duration	t _s	Note 3.	sec
Maximum Junction Temperature	TJ	+150	°C
Storage Temperature	T _{stg}	- 65 to +150	°C
Maximum Power Dissipation	P _D	Note 3.	mW

DC ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C)$

Characteristic	V _{CC} = 2.0 V	V _{CC} = 3.3 V	V _{CC} = 5.0 V	Unit
Input Offset Voltage				mV
V _{IO} (max) MC33201 MC33202 MC33204	±8.0 ±10 ±12	± 8.0 ±10 ±12	± 6.0 ± 8.0 ±10	
Output Voltage Swing $V_{OH} (R_L = 10 \text{ k}\Omega)$ $V_{OL} (R_L = 10 \text{ k}\Omega)$	1.9 0.10	3.15 0.15	4.85 0.15	V _{min} V _{max}
Power Supply Current per Amplifier (I _D)	1.125	1.125	1.125	mA

Specifications at V_{CC} = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. V_{EE} = Gnd.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = + 5.0 V, V_{EE} = Ground, T_A = 25°C, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _{CM} 0 V to 0.5 V, V _{CM} 1.0 V to 5.0 V)	3	V _{IO}				mV
MC33201: $T_A = +25^{\circ}C$.0	_	_	6.0	
MC33201: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			_	_	9.0	
MC33201V: $T_A = -55^{\circ}$ to +125°C			_	_	13	
MC33202: $T_A = +25^{\circ}C$			_	_	8.0	
MC33202: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			_	_	11	
MC33202V: $T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	_	14	
MC33204: $T_A = +25^{\circ}C$			-	_	10	
MC33204: $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			_	_	13	
MC33204V: $T_A = -55^{\circ}$ to +125°C			-	_	17	
Input Offset Voltage Temperature Coefficient ($R_S = 50 \Omega$)	4	$\Delta V_{IO}/\Delta T$				μV/°C
$T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	2.0	_	·
$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			_	2.0	_	
Input Bias Current (V _{CM} = 0 V to 0.5 V, V _{CM} = 1.0 V to 5.0 V)	5, 6	I _{IB}				nA
$T_A = +25^{\circ}C$			-	80	200	
$T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			_	100	250	
$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	-	500	
Input Offset Current (V _{CM} = 0 V to 0.5 V, V _{CM} = 1.0 V to 5.0 V)	_	I _{IO}				nA
T _A = + 25°C			_	5.0	50	
$T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			_	10	100	
$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	_	200	
Common Mode Input Voltage Range	_	V _{ICR}	V _{EE}	-	V _{CC}	V

^{1.} The differential input voltage of each amplifier is limited by two internal parallel back—to—back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.

^{2.} The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV.

^{3.} Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. (See Figure 2)

DC ELECTRICAL CHARACTERISTICS (cont.) ($V_{CC} = +5.0 \text{ V}$, $V_{EE} = Ground$, $T_A = 25^{\circ}C$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Large Signal Voltage Gain (V _{CC} = + 5.0 V, V _{EE} = – 5.0 V) R_L = 10 k Ω R_L = 600 Ω	7	A _{VOL}	50 25	300 250	_ _	kV/V
Output Voltage Swing (V_{ID} = \pm 0.2 V) R_L = 10 k Ω R_L = 10 k Ω R_L = 600 Ω R_L = 600 Ω	8, 9, 10	V _{OH} V _{OL} V _{OH} V _{OL}	4.85 - 4.75 -	4.95 0.05 4.85 0.15	- 0.15 - 0.25	V
Common Mode Rejection (V _{in} = 0 V to 5.0 V)	11	CMR	60	90	-	dB
Power Supply Rejection Ratio V _{CC} /V _{EE} = 5.0 V/Gnd to 3.0 V/Gnd	12	PSRR	500	25	_	μV/V
Output Short Circuit Current (Source and Sink)	13, 14	I _{SC}	50	80	_	mA
Power Supply Current per Amplifier ($V_O = 0 \text{ V}$) $T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}$ $T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$	15	I _D	_ _	0.9 0.9	1.125 1.125	mA

$\textbf{AC ELECTRICAL CHARACTERISTICS} \quad (V_{CC} = +5.0 \text{ V}, V_{EE} = Ground, T_A = 25^{\circ}C, \text{ unless otherwise noted.})$

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Slew Rate $(V_S = \pm 2.5 \text{ V}, V_O = -2.0 \text{ V} \text{ to } +2.0 \text{ V}, R_L = 2.0 \text{ k}\Omega, A_V = +1.0)$	16, 26	SR	0.5	1.0	_	V/µs
Gain Bandwidth Product (f = 100 kHz)	17	GBW	_	2.2	-	MHz
Gain Margin (R _L = 600Ω , C _L = $0 pF$)	20, 21, 22	A _M	_	12	_	dB
Phase Margin ($R_L = 600 \Omega$, $C_L = 0 pF$)	20, 21, 22	\emptyset_{M}	-	65	_	Deg
Channel Separation (f = 1.0 Hz to 20 kHz, A _V = 100)	23	CS	_	90	_	dB
Power Bandwidth ($V_0 = 4.0 V_{pp}, R_L = 600 \Omega, THD \le 1 \%$)		BW _P	_	28	_	kHz
Total Harmonic Distortion (R _L = 600 Ω , V _O = 1.0 V _{pp} , A _V = 1.0) f = 1.0 kHz f = 10 kHz	24	THD	_ _	0.002 0.008	_ _	%
Open Loop Output Impedance $(V_O = 0 \text{ V}, f = 2.0 \text{ MHz}, A_V = 10)$		z _O	-	100	_	Ω
Differential Input Resistance (V _{CM} = 0 V)		R _{in}	_	200	_	kΩ
Differential Input Capacitance (V _{CM} = 0 V)		C _{in}	-	8.0	_	pF
Equivalent Input Noise Voltage ($R_S = 100 \Omega$) f = 10 Hz f = 1.0 kHz	25	e _n	- -	25 20	_ _	nV/ √Hz
Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz	25	i _n	_ _	0.8 0.2	_ _	pA/ √Hz

Figure 2. Maximum Power Dissipation versus Temperature

Figure 3. Input Offset Voltage Distribution

Figure 4. Input Offset Voltage Temperature Coefficient Distribution

Figure 5. Input Bias Current versus Temperature

Figure 6. Input Bias Current versus Common Mode Voltage

Figure 7. Open Loop Voltage Gain versus Temperature

Figure 8. Output Voltage Swing versus Supply Voltage

Figure 9. Output Saturation Voltage versus Load Current

Figure 10. Output Voltage versus Frequency

Figure 11. Common Mode Rejection versus Frequency

Figure 12. Power Supply Rejection versus Frequency

Figure 13. Output Short Circuit Current versus Output Voltage

Figure 14. Output Short Circuit Current versus Temperature

Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load

Figure 16. Slew Rate versus Temperature

Figure 17. Gain Bandwidth Product versus Temperature

Figure 18. Voltage Gain and Phase versus Frequency

Figure 19. Voltage Gain and Phase versus Frequency

Figure 20. Gain and Phase Margin versus Temperature

Figure 21. Gain and Phase Margin versus Differential Source Resistance

Figure 22. Gain and Phase Margin versus Capacitive Load

Figure 23. Channel Separation versus Frequency

Figure 24. Total Harmonic Distortion versus Frequency

Figure 25. Equivalent Input Noise Voltage and Current versus Frequency

DETAILED OPERATING DESCRIPTION

General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail—to—rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground.

Since the common mode input voltage range extends from V_{CC} to V_{EE} , it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than V_{EE} , the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.

In addition to its rail–to–rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Ω loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature.

 $V_{CC} = +6.0 \text{ V}$

 $V_{EE} = -6.0 \text{ V}$

 $R_L = 600 \Omega$

 $C_L = 100 pF$

 $T_{\Delta} = 25^{\circ}C$

Figure 26. Noninverting Amplifier Slew Rate

Figure 27. Small Signal Transient Response

Figure 28. Large Signal Transient Response

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.

ORDERING INFORMATION

Operational Amplifier Function	Device	Operating Temperature Range	Package	Shipping
	MC33201D		SO-8	98 Units / Rail
	MC33201DR2	T _A = -40° to +105°C	SO-8	2500 Units / Tape & Reel
Single	MC33201P		Plastic DIP	50 Units / Rail
	MC33201VD	$T_A = -55^{\circ} \text{ to } 125^{\circ}\text{C}$	SO-8	98 Units / Rail
	MC33202D		SO-8	98 Units / Rail
	MC33202DR2	T 40.04 40500	SO-8	2500 Units / Tape & Reel
	MC33202DMR2	$T_A = -40 \degree \text{ to } +105 \degree \text{C}$	Micro-8	4000 Units / Tape & Reel
Dual	MC33202P		Plastic DIP	50 Units / Rail
	MC33202VD		SO-8	98 Units / Rail
	MC33202VDR2	T _A = -55° to 125°C	SO-8	2500 Units / Tape & Reel
	MC33202VP		Plastic DIP	50 Units / Rail
	MC33204D		SO-14	55 Units / Rail
	MC33204DR2		SO-14	2500 Units / Tape & Reel
	MC33204DTB	T _A = -40 ° to +105°C	TSSOP-14	96 Units / Rail
	MC33204DTBR2		TSSOP-14	2500 Units / Tape & Reel
Quad	MC33204P		Plastic DIP	25 Units / Rail
	MC33204VD		SO-14	55 Units / Rail
	MC33204VDR2	T _A = -55° to 125°C	SO-14	2500 Units / Tape & Reel
	MC33204VP		Plastic DIP	25 Units / Rail

MARKING DIAGRAMS

PACKAGE DIMENSIONS

PDIP-8 P, VP SUFFIX CASE 626-05

NOTES:

- 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR
- SQUARE CORNERS).

 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
С	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M		10°		10°
N	0.76	1.01	0.030	0.040

SO-8 D, VD SUFFIX CASE 751-06 **ISSUE T**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. DIMENSIONS ARE IN MILLIMETER.

 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR
 - PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
 OF THE B DIMENSION AT MAXIMUM MATERIAL
 CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.19	0.25		
D	4.80	5.00		
Е	3.80	4.00		
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
A	n۰	7 °		

PACKAGE DIMENSIONS

PDIP-14 P, VP SUFFIX CASE 646-06 ISSUE M

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.715	0.770	18.16	18.80
В	0.240	0.260	6.10	6.60
С	0.145	0.185	3.69	4.69
D	0.015	0.021	0.38	0.53
F	0.040	0.070	1.02	1.78
G	0.100	BSC	2.54 BSC	
Н	0.052	0.095	1.32	2.41
J	0.008	0.015	0.20	0.38
K	0.115	0.135	2.92	3.43
٦	0.290	0.310	7.37	7.87
M		10°		10°
N	0.015	0.039	0.38	1.01

SO-14 D. VD SUFFIX CASE 751A-03 ISSUE F

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI 1. DIMENSIONING AND TOLEHANCING PER AIR Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0 °	7°
Р	5.80	6.20	0.228	0.244
R	0.25	0.50	0.010	0.010

PACKAGE DIMENSIONS

TSSOP-14 **DTB SUFFIX** CASE 948G-01 ISSUE O

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IMETERS INCHES		HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
٦	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

PACKAGE DIMENSIONS

Micro-8 **DM SUFFIX** CASE 846A-02 ISSUE E

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
C		1.10		0.043
D	0.25	0.40	0.010	0.016
G	0.65 BSC		0.026	BSC
Н	0.05	0.15	0.002	0.006
J	0.13	0.23	0.005	0.009
K	4.75	5.05	0.187	0.199
L	0.40	0.70	0.016	0.028

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.