MICROCHIP

ANG16

Digital Signal Processing with the PIC16C74

Author: Darius Mostowfi
Design Consultant
INTRODUCTION

This application note describes the basic issues that
need to be addressed in order to implement digital sig-
nal processing systems using the PIC16C74 and
provides application code modules and examples for
DTMF tone generation, a 60 Hz notch filter, and a
simple PID compensator for control systems. These
routines can also be used with other PIC16C6X and
PIC16C7XXX processors with minor modifications and
the addition of external analog I/O devices.

The use of general purpose microcontrollers for
low-end digital signal processing applications has
become more commonplace these days with the avail-
ability of higher speed processors. Since most signal
processing systems consist of a host processor and
dedicated DSP chip, the use of a single microcontroller
to perform both these functions provides a simpler and
lower cost solution. In addition, the single chip design
will consume less power which is ideal for battery
powered applications. The PIC16C74 with its on-chip
A/D, PWM module, and fast CPU is an ideal candidate
for use in these low-bandwidth signal processing
applications.

A typical signal processing system includes an A/D
converter, D/A converter, and CPU that performs the
signal processing algorithm as shown in Figure 1.

The input signal, x(t), is first passed through an input
filter (commonly called the anti-aliasing filter) whose
function is to bandlimit the signal to below the Nyquist
rate (one half the sampling frequency) to prevent
aliasing. The signal is then digitized by the A/D
converter at a rate determined by the sample clock to
produce x(n), the discrete-time input sequence. The
system transfer function, H(z), is typically implemented
in the time-domain using a difference equation. The
output sample, y(n), is then converted back into the
continuous-time signal, y(t), by the D/A converter and
output low-pass filter.

The calculation of the output signal using a difference
equation requires a multiply and accumulate (MAC)
operation. This is typically a single-cycle instruction on
DSP chips but can take many cycles to perform on a
standard microcontroller since it must be implemented
in code. Since the digitization of the signal, calculation
of the output, and output to the D/A converter all must
be completed within the sample clock period, the speed
at which this can be done determines the maximum
bandwidth that can be achieved with the system. The
relatively slow speed of most microcontrollers is the
major limitation when they are used in DSP applica-
tions but the PIC16C74’s fast instruction execution
speed (as fast as 200 ns/instruction) can provide the
performance required to implement relatively low band-
width systems. In addition, the device’s on-chip A/D and
PWM modules provide all the functions needed for a
single chip system. Only a few external components
are needed to use the PIC16C74 for tone generation,
filtering of transducer signals, or low bandwidth control.

FIGURE 1: TYPICAL SIGNAL PROCESSING SYSTEM
Low-pass X[l Y[n] Low-pass
Xt ey | ®| AD |— B H[z] —»| DA |—®=| — Y]]

System Clock

0 1997 Microchip Technology Inc.

DS00616A-page 1

ANG16

CODE DEVELOPMENT TOOLS

The code for these applications was written using
Byte Craft's MPC C compiler. The MPC compiler provides
an Integrated Development Environment (IDE) and gen-
erates highly optimized code for the entire PICmicro™
family. For new PICmicro users that are familiar with C,
this is an ideal way to quickly develop code for these
processors. In addition, the listing files can be studied in
order to learn the details of PICmicro assembly language.
The modules and examples for this application note use
C for the main program body and in-line assembly lan-
guage for the time-critical routines. MPC provides inter-
rupt support so that interrupt service routines (ISRs) can
be easily written in either C or assembly. This feature was
used to provide a timer ISR for one of the code modules.
The compiler proved to be a valuable tool that allowed
both high level and assembly language routines to be writ-
ten and tested quickly.

In order to provide the double precision math functions
required for this application note, a couple of existing
math functions written for the PIC16C54 (AN525, Pro-
gramming PIC16C5X Devices on Logical Devices) were
converted for use with MPC. The double precision multiply
and addition routines were modified by first changing all
RAM declarations done in EQU statements to C
“unsigned char’ variable declarations. The main body of
assembly language code was preceded by ‘#asm” and
ended by “#endasm” preprocessor directives which tell
the compiler where the in-line assembly code starts and
ends. Finally, any macro sections and register names that
are defined differently in MPC were changed.

The assembly language routines for tone generation and
filtering were also written as C functions using the com-
piler. Assembly language routines written in this way can
be called directly from other assembly language modules
or called directly from C by using the label name as a C
function. Source listings for all the modules and example
programs can be found in the appendices at the end of
this application note. These modules can be directly com-
piled using the MPC compiler or, alternatively, the assem-
bly language sections can be used with MPASM with
minor modifications.

Number Representation and Math Routines

One of the challenges of using any general purpose
microcontroller for signal processing algorithms is in
implementing the finite word-length arithmetic required to
perform the calculations. As mentioned before, the speed
at which the MAC operations can be performed limits the
maximum achievable bandwidth of the system. Therefore,
the routines that perform the multiplication and the main
signal processing algorithms need to be optimized for
speed in order to obtain the highest possible bandwidth
when using the PIC16C74.

The selection of word size and coefficient scaling are also
important factors in the successful implementation of sig-
nal processing systems. The effects of using a fixed word
length to represent the signal and do calculations fall into

three categories: signal quantization, round-off error, and
coefficient quantization. The signal quantization due to
the A/D converter and round-off error due to the finite pre-
cision arithmetic affect the overall signal-to-noise
performance of the system. Scaling of the input signal
should be done before the A/D converter to use the full
input range and maximize the input signal-to-noise ratio.
The use of double precision math for all calculations and
storing intermediate results, even if the input and output
signals are represented as 8-bit words, will help to reduce
the round-off error noise to acceptable levels. Coefficient
guantization occurs when the calculated coefficients are
truncated or rounded off to fit within the given word length.
This has the effect of moving the system transfer function
poles and zeros which can change the system gain, criti-
cal frequencies of filters, or stability of the system. The
successful implementation of these systems requires
careful design and modeling of these effects using one of
the many software programs that are available. The code
written for this application note was first modeled using
PC MATLAB before being implemented on the PIC16C74.

The algorithms in this application note are all
implemented using fixed point two’s compliment
arithmetic. Two math libraries were used for the
examples: one 8-bit signed multiply routine that was writ-
ten specifically for the tone generation algorithm, and the
modified double precision routines for the PIC16C54 that
were used in the filtering routine. All numbers are stored
in fractional two's compliment format where the MSB is
the sign bit and there is an implied decimal point right after
it. This is commonly referred to as Qx format where the
number after the Q represents the number of fractional
bits in the word. For instance, 16 bit words with the deci-
mal point after the MSB would be referred to as Q15. This
format allows numbers over the range of -1 to 0.99 to be
represented and, because the magnitude of all numbers
is less than or equal to one, has the advantage that there
can be no overflow from a multiplication operation.

Since calculations are done using two’s compliment arith-
metic, values read by the PIC16C74’s A/D converter need
to be converted to this format. This can be easily done if
the input is set up to read values in offset binary format.
In this representation, the most negative input voltage is
assigned to the number 0, zero volts is assigned the num-
ber 128, and the most positive voltage input is assigned
255. Since the PIC16C74 has a unipolar input A/D con-
verter, a bipolar input signal must be scaled to be between
0 and 5V. One way to accomplish this is to use an op-amp
scaling and offset circuit. The signal should be centered
at 2.5V and have a peak to peak voltage swing of
4 t0 4.5V. The offset binary number can be converted to
two’s compliment format by simply complimenting the
MSB of the word. Once the signal processing calculations
are completed, the number can be converted back to off-
set binary by complimenting the MSB before it is written
to the PWM module. A similar level shifting circuit can be
used at the PWM output to restore the DC level of the sig-
nal. Using this technique allows a wide range of analog
input voltages to be handled by the PIC16C74.

DS00616A-page 2

0 1997 Microchip Technology Inc.

ANG16

A/D and D/A Conversion

The PIC16C74’s internal 8-bit A/D converter and PWM
modules can be used to implement analog /O for the sys-
tem. The A/D converter along with an external anti-alias-
ing filter provides the analog input for the system.
Depending on the input signal bandwidth and the sam-
pling frequency, the filter can be a simple single pole RC
filter or a multiple pole active filter. The PWM output along
with an external output “smoothing” filter provides the D/A
output for the system. This can be a simple RC filter if the
PWM frequency is much higher (five to ten times) than the
analog signal that is being output. Alternatively, an active
filter can also be used at the PWM output . Since the use
of the A/D and PWM modules is covered in detail in the
data sheet for the part, they will not be covered here. In
addition, since the PIC16C74's A/D converter is similar to
the PIC16C71 and the PWM module is the same as the
PIC16C74, the use of these is also covered in application
notes AN546, AN538, and AN539.

Appendix A contains the listing for the C module “ANALO-
GIO.C" that has the functions that read the A/D converter
input, initialize the PWM module, and write 8-bit values to
the PWM module. The number format (offset binary or
two’s compliment) for the A/D and PWM values as well as
the PWM resolution and mode are set using “#define ”
pragmas at the beginning of the module. The
get_sample() function takes the A/D input multiplexor
channel number as an argument and returns the mea-
sured input value. The init_ PWM() function takes the
PWM period register PR2 value as an argument. The
write_PWM() function takes the output values for PWM
modulel and 2 and writes them to the appropriate regis-
ters using the specified resolution. If the second argument
to the function is 0, the registers for PWM module 2 are
unaffected. The PWM resolution is always 8-bits but the
mode used depends on the PWM frequency.

The A/D conversions need to be performed at the system
sample rate which requires that some form of sample
clock be generated internally or input from an external
source. One way to generate this clock internally, in soft-
ware with minimal effort, is to use the Timer2 interrupt.
Since Timer2 is used to generate the PWM period,
enabling the Timer2 interrupt and using the Timer2
postscaler can generate an interrupt at periods that are
integer divisors of the PWM period. The ISR can set a
software “sample flag” that is checked by the main routine.
Once the sample flag is asserted by the ISR, the main
routine can then clear it and perform the signal processing
operation, output the next sample, and then wait for the
sample flag to be asserted true again. Alternatively, a
separate timer/counter or external clock input can be
used for the system sample clock. The latter two methods
have the advantage that the PWM frequency can be set
independent of the sampling period. For best results, the
PWM frequency should be set for at least five times the
maximum frequency of the analog signal that is bring
reproduced. The example programs illustrate the use of
both of the methods for generating an internal sample
clock.

Tone Generation

For systems that need to provide audible feedback or to
provide DTMF signaling for telcom applications, the
PIC16C74’'s PWM module can be used to generate these
signals. One way to do this is to output samples of a sinu-
soidal waveform to the PWM module at the system sam-
pling rate. This method is relatively simple but is limited to
single tones and may require large amounts of memory
depending on the number of samples used per cycle of
the waveform and the number of tones that need to be
generated. A more efficient method of generating both
single and dual-tone signals is to use a difference equa-
tion method. This method uses a difference equation that
is derived from the z-transform of a sinusoid as follows:

The z-transform of a sinusoid is

-1 .
z "sinwT

1
1-27 coswT + 772

where the period w=2mnfand T is the sampling period.

If this is interpreted as the transfer function
H(2) = Y(2)/X(2) then the difference equation can be found
taking the inverse z-transform and applying the associ-
ated shift theorem as follows:

rearranging:
Y(2)(1 - 2z coswT + 72) = X(2)(Z1sinwT)

Y(2) = ZIX(@)sinwT + Z1Y(2)2coswT - 72Y(2)

taking the inverse z-transform:
ZUY@)] = ZYZX@sinaT + Z1Y(2)2c0swT - 72Y(2)]

y(n) = sinaT x(n - 1) + 2coswT y(n- 1) - y(n - 2)

If we let a = sinwT and b = coswT, the equation can be
written as:

yin)=ax(n-1)+ 2by(n-1)-y(n-2)

thus we have a difference equation with coefficients a and
b. Note that only two coefficients are needed to generate
a sinusoidal output sequence. These are calculated from
the relationship above and stored in memory for use by
the tone generation algorithm.

If we input an impulse to this system (x(n) = 1 atn =0 and
is zero elsewhere) then the output of the system will be a
discrete-time sinusoidal sequence. Note that at n = 0, the
output will always be 0 and x(n) is only 1 at n =1 so the
sequence becomes:

y(0) =0

y()=a
y(n)=2by(n-1)-y(n-2)

for n equal to or greater than 2

0 1997 Microchip Technology Inc.

DS00616A-page 3

ANG16

In order to further simplify the implementation of the algo-
rithm, we can omit the first sample period. Since the out-
put is already at O before starting, this will make no
difference in the final output other than the fact that it will
be time shifted by one sample. To generate dual tones,
the algorithm is executed once for each tone and the two
output samples are summed together. Since the output
must be calculated and output to the D/A each sample
period, a limitation exists on the frequency of the tone that
can be produced for a given sample rate and processor
speed. The higher the ratio of the sample clock to the tone
frequency, the better, but a sample rate of at least three to
four times the highest tone output should produce a sine
wave with acceptable distortion.

FIGURE 2: SINGLE TONE SIGNAL

Appendix B contains the listing for the “PICTONE.C” mod-
ule which uses the difference equation method to produce
variable length tones from the PWM module. Timer2 is
used to generate the PWM period as well as the sample
clock and tone duration timer. To send a tone, the coeffi-
cients and duration are written to the appropriate vari-
ables and then the tone routine is called. If the a2 and b2
coefficients are cleared, the routine will only generate a
single tone sequence. The difference equation algorithm
uses 8-bit signed math routines for the multiply opera-
tions. Using 8-bit coefficients reduces the accuracy by
which the tones can be generated but greatly reduces the
number of processor cycles needed to perform the algo-
rithm since only single precision arithmetic is used. The
spectrum of a single tone signal generated using this rou-
tine is shown in Figure 2.

Note that the second harmonic is better than 40 dB below
the fundamental. Accuracy of this particular tone is better
than 0.5%.

An example program “DTMFGEN.Cillustrates the use of
the tone module to generate the 16 standard DTMF tones
used for dialing on the telephone system. A sampling rate
of 6.5 kHz was used which allows dual tones to be gener-
ated on a processor running at 10 MHz. Accuracy with
respect to the standard DTMF frequencies is better than
1% for all tones and all harmonics above the fundamental
frequency are greater than 30 dB down.

PIC16C74 Tone Generation Routine Output Spectrum - 770 Hz Fundamental

0.0

-10

Relative Amplitude (dB)
o
o

JAM. W

L

0.0 500 1.0k 1.5k

2.0k 2.5k 3.0k 3.5k
Frequency (Hz)

DS00616A-page 4

0 1997 Microchip Technology Inc.

ANG16

Digital Filters

Digital filters with critical frequencies up to a kilohertz or
so can be implemented on the PIC16C74. Digital filters
fall into two classes: Finite Impulse Response (FIR) and
Infinite Impulse Response (IIR) filters. FIR filters require
more coefficients and multiplication operations to imple-
ment practical filters and are not as well suited for imple-
mentation on the PIC16C74. IIR type filters are typically
designed starting with an analog filter prototype and then
performing an analog to digital transformation to produce
the digital filter coefficients. The subject of digital filter
design is not within the scope of this application note but
there are many excellent texts that cover the theory and
design of these filters.

The implementation of a second-order IIR filter is done by
using a second-order difference equation. A
second-order infinite impulse response (lIR) filter has a
transfer function of the form:

bo + blz'l + bzz_z

H(2) =
1+ a7t + ayz?

Where a, , a,, by, by, and b, are the coefficients of the
polynomials of the system transfer function that, when
factored, yield the system poles and zeros. The difference
equation found by taking the inverse z-transform and
applying the shift theorem is:

y(n) =
box(n) + byx(n- 1) + box(n- 2) - ayy(n - 1) - ayy(n - 2)

Since the transfer function coefficients are used directly in
the difference equation, this is often called the “Direct
Form I” implementation of a digital filter. This form has its
limitations due to numerical accuracy issues but is effec-
tive for implementing second-order systems.

Appendix C contains the listing for the general-purpose
filter routine “lIR_FILT.C " that can be used to imple-
ment low-pass, high-pass, bandpass, and bandstop
(notch) filters. The filter() function takes an 8-bit input
value x(n) and calculates the output value y(n) . The filter
coefficients are stored as 16-bit two's compliment
numbers and computation of the output is done using
double precision arithmetic. Since the coefficients
generated from the filter design program will be in decimal
form, they need to be scaled to be less than 1 and then
multiplied by 32,768 to put them in Q15 format. Additional
scaling by factors of two may be required to prevent over-
flow of the sum during calculations. If this is done, the out-
put must be multiplied by this scale factor to account for
this. The “lIR_FILT.C " module contains two other sub-
routines required for the filtering program. One if these is
a decimal adjust subroutine to restore the decimal place
after two 16-bit Q15 numbers are multiplied. The subrou-
tine shifts the 32-bit result left by one to get rid of the extra

sign bit. The other routine scales the output by factors of
two and is used after the output of the filter has been
calculated to account for the scaling of the coefficients.

An example program “NOTCH_60.C'is provided that illus-
trates the implementation of a 60 Hz notch filter using the
“IIR_FILT.C " module. The filter was modeled and
designed using PC MATLAB before being implemented
on the PIC16C74. A sample rate of 1 kHz is used which
means that signals up to a few hundred hertz can be pro-
cessed. The filter provides an attenuation of about 40 dB
at 60 Hz and can be used to remove interference from
sensor signals in a system.

Digital Control

A low bandwidth digital control system can be
implemented on the PIC16C74 using the analog I/0 and
IIR filter routines. A typical digital control system is shown
below:

FIGURE 3: TYPICAL DIGITAL CONTROL
SYSTEM
e[n]
r-:@-» K[z] > D/IA — GJs] > y[t]
Plant
y[n]
AID =

The input, r, is the reference input and y(t) is the
continuous-time output of the system. G(s) is the analog
transfer function of the plant (controlled system) and K(z)
is the digital compensator. The error signal is calculated
by subtracting the measured output signal, y(n), from the
reference. The controller transfer function is essentially a
filter that is implemented in the time-domain using a differ-
ence equation. Since digital control system design is a
complex subject and the design of a suitable compensa-
tor depends on the system being controlled and the per-
formance specifications, only the implementation issues
will be discussed.

0 1997 Microchip Technology Inc.

DS00616A-page 5

ANG16

One popular and well understood compensator is the Pro-
portional-Integral-Derivative (PID) controller whose trans-
fer function is of the form:

Ki
Tt Kp(1-ZY

K(Z) = Kp +

Where Kp is the proportional gain, K;is the integral gain
,and Kp is the derivative gain. The transfer function can be
implemented directly or can be put in the form of a stan-
dard second-order difference equation from the modified
transfer function as shown below:

HE) (K T2+ KpT + Kp) - (2Kp + KpT)Z1 + Kpz?

Ta-zh

K
y(n) = (Kp+ KT+ TD X(n)

(Kp+ o
- (Kp T)x(n-l)

Kp
+T x(n-2)-y(n-1)

Since the numerator coefficients will be greater than one,
a gain factor K needs to be factored out so that the result-
ing coefficients are less than one. In this way, the IIR filter
routine can be used to implement the controller. After the
filter routine, the output y needs to be multiplied by K
before being output to the PWM module. Since the gain
can be high, this result needs to be checked for overflow
and limited to the maximum 8-bit value, if required. Satu-
rating the final result prevents the system from going
unstable if overflow in the math does occur. The gains can
also be applied externally at the D/A output. For example,
the PWM can drive a power op-amp driver that provides a
+ 20 volt swing for a DC motor.

RESULTS AND CONCLUSION

The results obtained using the PIC16C74 in these appli-
cations were impressive. The tone generation routines
produce very clean sinusoidal signals and DTMF tones
generated using this routine have been used to dial num-
bers over the telephone system with excellent results. In
addition, tones used for audible feedback are more pleas-
ing to the ear than those generated from a port pin as is
typically done on processors without PWM modules.
Using the PIC16C74 to generate these tones eliminates
the need for special DTMF generator IC’s thus reducing
the cost and simplifying the design. The tone routine
requires approximately 125 instruction cycles to calculate
an output sample for a single tone output and
230 instruction cycles to calculate an output sample for a
dual tone output.

The IIR filtering routines produce good results and have
been used to filter 60 Hz signals on sensor lines and also
to implement a simple PID controller system with excellent
results. The IIR routine takes approximately 1670 instruc-
tion cycles to calculate the output. Table 1 shows the per-
formance that can be expected with the PIC16C74 for
various processor speeds.

In conclusion, the PIC16C74 provides the necessary per-
formance to provide these simple, low bandwidth signal
processing operations. This means that products using
this device can benefit from cost and power savings by
eliminating specialized components that normally per-
form these tasks.

References

Antoniou, A. Digital Filters: Analysis and Design. NY:
McGraw-Hill Book Co., 1979.

Openheim, A.V. and Schafer, R.W. Digital Signal
Processing. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1975.

TABLE 1: PIC16C74 IIR FILTER PERFORMANCE

4 MHz 8 MHz 10 MHz 16 MHz 20 MHz
A/D Input (35 cycles + 15 ps) 50 ps 325 29 23.75 22
IIR Filter (1850 cycles) 1850 925 740 462.5 370
PWM Output (62 cycles) 62 31 24.8 15.5 12.4
Total 1962 988.5 793.8 501.75 368.4
Max. Sampling Frequency ~500 Hz ~1000 Hz ~1250 Hz ~2000 Hz ~2500 Hz

DS00616A-page 6

0 1997 Microchip Technology Inc.

ANG16

SCHEMATIC

FIGURE 4:

(uroaner) A+

(g 21nBi4 993)

preog
ZN3adld

T0d

vd

+
Aot _J L0 NI099LOINT
an -0
m N1 anNo M 4n OH% 8D

anTo] JSO +2 > +

N | 1 ¢

J K10) +A\ ON T

Zn
A0T

I
(slqe1 @9s) BD

0T

4d oog | 41l 6€000 | 9O
41 2100 g0 | ao
41 2800 a1 | ed

ZH Ve ZH 052

ZH¥ '€ PUB ZH 0S¢ 10} SaNn[ep Joyoede)
a|ddiy puegssed gp T - Ja)I4 ABUSAGaYD 810d €

L/vmm_z._
ot |* an (peidnoo 0q)
€T Au\ " Indino feubis

A0LY

1snlpy [9A87 indu|

(pajdnog o)
uj [eubis

41 ot
€A
40T , , 01D
AV 1snlpy 19sy0 ndino + 1T
| C
[RNE=i%e)
(310781 95) [ELEEES) EL) 14
%0 Y
quEJ\,\ 10T 40T %0T ﬂwm%
i+ AN Wamt—" W\ :
L _
/7 °
1T
3001 NOT
V_ONW AV
| C
6 oty MW\ MN\+a
(a1qes @9s) BD
NV 41 170
N4z
TIA ol
%00T
Al
1snlpy 19s40 ndul)+ 50
4ot

DS00616A-page 7

0 1997 Microchip Technology Inc.

ANG16

PICDEM2 SCHEMATIC TIE-IN

FIGURE 5

= X = €.0910Id = =
9®—f®#0000000¢—@
6100000000 wg&l
—90000000 SSA
0000000]
agsees \
10¥ .9
868605000 Xd_ 8L oy Py
cesaseens Aoy SR
600000600 Sod 9T oy vay 1<
868605000 Va5 ST sz
€0y €84 57
cesaseens e]
000000000 RS A A P s cod €Tf5y 194
000000000 : . ISO_ T [44
4998000000 0282028 OT= 0T Lf - - - - ---- - T oso | O
¢—90000000 'ETHSCTUYSTIYS =0Td = =1
—fResennes— | #gL HgLl, s [£
0000000 ! L0 90 , vvH g
0000000 "OAG+ AGH agl \ eV [&
d preoqpealg ' o 1M1 ' vy v
NG+ _ B >m+ fiopeg |+~ | - 0 oo ;_ ot or - _m>_ Y vy 3
ro L H N6 WZOM | ¢ Y 8y perendod 10N \[2050 or[Ps0 Vg -
61D - ' = ' T
0cC = ONNH \ NG+ Auo uoisinoid | | 355 6 1OSO MIOW [T 7ol Tag M - T
810 | :o B eNY
+ YTENTY it aan AAA
NOD [4sle} Eo vsoord Lay 8 0e 9gd N v L
o—{LNO NI 00 Py T E——— - 0 1o eNY ©
o 9ay 1 A
[<Ta] —_— T | qdy AR 9] T
0T8N 5ad 9 10 S ENY 2
1 AA
Jamod Hma ra El B Y - , vEg e S| &
oy NS . £qy v ! 00XL m}z 2
2 2ay 3) Mho |- ggg W7 7|8
B ~ 10y z ' pareindod 10N L =\ A 5
= Tr 0ay Tl ' = = A ' ENY
ne* mﬂ_l wHoo a8 _ 4d ONH agL od ow “ Tad Wy 12 4
avs 1 [xd 0¥ 8 _ Ol il 5] ! ENY
= . 9 : XL (90¥) L l ¢ 1T \ ogd Y T
- 10 eNY
H_o| 2 10— GoH 9 ' o ' —
- € — 1 UQ UOISINOId — C
o1 iy S €10 ¥as (o) G| O o _ T preogAex
12! +1+22 +10% 10S (€0d) v ¥90910Id
204 €
- d 0 € SSA
NITs LnoTH[2 50 o0 ¢ s0 A
¢l Xxd 0SO (00d) T =5 20S0 1
1N0ZL NIZLigr /o4 10SO
LNOTL NITL=T— 7 904 =
VZEIXVYIN SoY 484Gy —Tay 3 NG+
+A vOu 99 |-&= ogy I ——
6
20A €Y MMM 8€ Sdd 9 0.
en [9T ¢od L8 94 S . Zs
Tod €gy ALY
9 cay 2
004 zay £y
. GE zad €
10 1ay T84 2 T >
e 9qy 08der—ay T NG+
_ ODNMV Say SV vy EE]
NG+ (2503 vay AN e AW =
£ay eV S oLy
SSA zay ARl Zvd 814 0Ly
dm Aldsa Tay Tvd e Tvd W= o
—vas 105 ann oay ovd = s — 2d 9Ty
8102772 = 104 234 MIOWFF—gop vy R
oL 13y aap 0Ly
g 10 i aan|ZE ITy _ _
V12 = 6 o T oI =
aapn OV n Gvd 9 o
"SpRJRJOIDIW U] BIe ol 1. Wa S el
sanfen souenoede)d ‘Mp/T %S T = To m«m m L,
‘SWILO Ul I8 San[eA aJue)sIsal = 1o £s ALY vd ¢ AUy '
‘payoads asImIBYIO SSajUN |_||_ Lo 70 ovd 1 ™
. vd
‘910N o o AGH Ao NG+

0 1997 Microchip Technology Inc.

DS00616A-page 8

ANG16

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX A: ANALOG I/O MODULE

/
* Analog 1/0 Module
*

* Written for “Digital Signal Processing with the PIC16C74" Application Note
*

* This module contains functions that read the A-D inputs, initialize the PWM
* ports, and write values to the PWM ports.

*

* D. Mostowfi 4/95

#define active 1 /* define active as 1 */

#define LOW 0 /* define LOW as 0 */

#define HIGH 1 /* define HIGH as 1 */

#define OFFSET 0 /* define offset binary mode as 0 */
#define TWOS 1 /* define two’s compliment mode as 1 */

#define AD_FORMAT TWOS /* define A-D format as TWOS */
#define PWM_FORMAT TWOS /* define PWM format as TWOS */
#define PWM_RES HIGH /* define PWM resolution as HIGH */

bits FLAGS; /* general purpose flags */
#define sample_flag FLAGS.1 /* define sample_flag as FLAGS.1 */

/
* A-D Converter Routine - reads A-D converter inputs

*

* usage:
* - call get_sample(channel #)
* - returns 8 bit value

char get_sample(char channel)

{

char i;
ADRES=0; * clear ADRES */
STATUS.C=0; [* clear carry */
RLCF(channel); /* and rotate channel 3 times */
RLCF(channel); /* to put in proper position */
RLCF(channel); [* for write to ADCONO */
ADCONO=channel; * write channel to ADCONO */
ADCONO0.0=1,; /*turn on A-D */
i=0; /* set delay loop variable to 0 */
while(i++<=5){}; /* delay (to ensure min sampling time) */
ADCONO0.2=1; [* start conversion */
while(ADCONO0.2){} [* wait for eoc */
ADCONO0.0=0; /* turn off a-d converter */
if(AD_FORMAT==TWOS){ /* if format is two’s compliment */

ADRES.7=!ADRES.7; /* compliment MSB */

}
return ADRES; /* return value in a-d result reg */

}

/
* PWM Initialization Routine - sets up PR2, sets output to mid-point, and
* starts timer 2 with interrupts disabled.

*

* usage:

0 1997 Microchip Technology Inc. DS00616A-page 9

ANG16

* - call init_PWM(PR2 register value)

void init_PWM(char _pr2)

{

PR2=_pr2; /* reload value for 40khz PWM period */

CCP1CON.5=0; /* set CCPxCON = 0 for 50% output */

CCP1CON.4=0;

CCP2CON.5=0;

CCP2CON.4=0;

if(PWM_RES==HIGH){ /* if resolution is high, set CCPRxH=0 and */
CCPR1H=0x00; /* CCPRxL=0x20 for 50% PWM duty cycle */
CCPR1L=0x20;
CCPR2H=0x00;
CCPR2L=0x20;

}

else{
CCPR1H=0x00; [* if resolution is low, set CCPRxH=0 and */
CCPR1L=0x80; /* CCPRxL=0x80 for 50% PWM duty cycle */
CCPR2H=0x00;
CCPR2L=0x80;

}

T2CON.TMR20ON=1,; /* start timer 2 */

PIE1.TMR2IE=0; /* and disable timer 2 interrupt */

}

/
* PWM Output Routine - writes output values to PWM ports

*

* Both high resolution and low resolution modes write 8 bit values - use of
* high or low resolution depends on PWM output period.

*

* usage:
* - call write_PWM(channel 1 value, channel 2 value)
* if channel 2 value=0, PWM port 2 not written

void write_ PWM(bits pwm_out1, bits pwm_out2)
{

if(PWM_FORMAT==TWOS){ [* if format is two’s compliment */
pwm_outl.7=!pwm_outl.7; /* compliment msb’s */
pwm_out2.7=!pwm_outl.7;
}
if(PWM_RES==HIGH){ [* if resolution is high */
STATUS.C=0; [* clear carry */
pwm_out1l=RRCF(pwm_outl); /* rotate right and write two Isb’s */
CCP1CON.4=STATUS.C; /*to CCP1CON4 and CCP1CONS5 */
STATUS.C=0;
pwm_out1=RRCF(pwm_outl);
CCP1CON.5=STATUS.C;
if(pwm_out2!=0){ /* if pwm_out2 not 0, do the same */
STATUS.C=0; [* for channel 2 */
pwm_out2=RRCF(pwm_out2);
CCP2CON.4=STATUS.C;
STATUS.C=0;
pwm_out2=RRCF(pwm_out2);
CCP2CON.5=STATUS.C;
}

}
CCPR1L=pwm_outl; /* write value to CCPR1L */

if(pwm_out2!=0){ /* if pwm_out2 not 0, do the same */
CCPR2L=pwm_out2; [* for CCPR2L */

}
} /* done */

DS00616A-page 10 0 1997 Microchip Technology Inc.

ANG16

required).

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not

APPENDIX B: TONE GENERATION MODULE

/

* Tone Generation Module

*

* Written for “Digital Signal Processing with the PIC16C74” Application Note.

*

* This module contains a C callable module that generates single or dual

* tones using a difference equation method:

*

* y1(n)=al*x(n-1)+b1*y1(n-1)-y1(n-2)
* y2(n)=a2*x(n-1)+b2*y2(n-1)-y2(n-2)

* The routine is written in assembly language and uses the optimized signed

* 8x8 multiply routine and scaling routine in the file 8BITMATH.C.
*

* D. Mostowfi 2/95

#include “\mpc\apnotes\8bitmath.c” /* 8 bit signed math routines */

#define sample_flag FLAGS.1 /* sample flag */
#define no_tone2 FLAGS,2 /* no tone 2 flag */

extern char ms_cntr;

char al;
char a2;
char bl;
char b2;
char duration;

char y1;
char y2;

/* millisecond counter for tone loop */

/* first tone (low-group) coeeficient 1 */

/* first tone (low-group) coefficient 2 */

/* second tone (high group) coefficient 1 */

/* second tone (high group) coefficient 2 */
/* tone duration */

/* output sample y1(n) for tone 1 */
/* output sample y2(n) for tone 2 */

/

/

* Tone function - generates single or dual tone signals out PWM port 1.

*

* usage:

* - write coefficients for tone 1 to al and bl

* - write coefficents for tone 2 to a2 and b2 (0 if no tone 2)
* - write duration of tone in milliseconds to duration

*

- call tone() function

void tone(void)

{

charyl 1;
charyl_2;
chary2_1,
chary2_2;

PIR1.TMR2IF=0;
PIE1.TMR2IE=1;
ms_cntr=0;

STATUS.RP0=0;

#asm
clf y1
clrf y2
crf y1 1
clif y1 2

/*y1(n-1) */
[*y1(n-2) */
I*y2(n-1) */
[*y2(n-2) */

[* clear timer 2 interrupt flag */

/* and enable timer 2 interrupt */
[* clear ms counter */

/* set proper bank!!! */

; clear output byte and taps

0 1997 Microchip Technology Inc.

DS00616A-page 11

ANG16

clif y2 1 ;
clrf y2 2 ;

bcf no_tone2 ; clear no tone 2 flag
clrf ms_cntr ; clear millisecond counter

first_sample:
movf alwW ; first iteration
movwf yl1 ; yl(n)=al
movwf yl1_1 ;
moviw 0x00 ;
iorwf a2,w ;
btfsc STATUS,Z ; generate second tone (a2 !=0) ?
bsf no_tone2 ;
movf a2,wW ; y2(n)=a2
movwf y2 ;
movwf y2 1 ;
movf y2,W ;
addwf y1,F ; y1(n)=y1(n)+y2(n) (sum two tone outputs)

tone_loop:
movf ms_cntr, W ; test to see if ms=duration (done?)
subwf durationW ;
btfsc STATUS,Z ;
goto tone_done ;

wait_ PWM:
btfss FLAGS,1 ; test sample flag (sample period elapsed?)
goto wait PWM ; loop if not
bcf FLAGS,1 ; If set, clear sample flag

#endasm

write_PWM((char)y1,0); /* write y1 to PWM port */
#asm

next_sample:
movf bl,W ; y1(n)=b1*y1(n-1)-y1(n-2)
movwf multcnd ;
movf yl 1,W ;
movwf multplr ;
call _8x8smul ;
call scale_16 ;
movf yl 2,W ;
subwf result_ LW ;
movwf yl1 ;
movf yl 1,W ; y1(n-2)=y1(n-1)
movwf yl 2 ;
movf y1,W ;y1(n-1)=y1(n)
movwf y1 1 ;
btfsc no_tone2 ;
goto tone_loop ;
movf b2,W ; y2(n)=b2*y2(n-1)-y2(n-2)
movwf multcnd ;
movf y2 1,W ;
movwf multplr ;
call _8x8smul ;
call scale_16 ;
movf y2 2,W ;
subwf result_ LW ;
movwf y2 ;
movf y2_1,W ; y2(n-2)=y2(n-1)
movwf y2_2 ;
movf y2,W ;y2(n-1)=y2(n)
movwf y2 1 ;

DS00616A-page 12

0 1997 Microchip Technology Inc.

ANG16

movf y2,W ;
addwf y1,F ; y1(n)=y1(n)+y2(n) (sum two tone outputs)

goto tone_loop ; go and calculate next sample
tone_done:
#endasm

CCP1CON.5=0; /* reset PWM outputs to mid value */
CCP1CON.4=0;
CCP2CON.5=0;
CCP2CON.4=0;
CCPR1H=0x00;
CCPR1L=0x20;
CCPR2H=0x00;
CCPR2L=0x20;

PIE1.TMR2IE=0; /* disable timer 2 interrupts */
PIR1.TMR2IF=0; /* and clear timer 2 interrupt flag */

0 1997 Microchip Technology Inc. DS00616A-page 13

ANG16

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX C: DTMF TONE GENERATION

/
* DTMF tone generation using PIC16C74

*

* Written for the “Digital Signal Processing Using the PIC16C74” Ap Note

*

* Generates 16 DTMF tones (1-9,0,*#,A,B,C,D) out PWM port 1

*

* Uses PICTONE.C and ANALOGIO.C modules

*

* D. Mostowfi 4/95

#include “\mpc\include\delay14.h”
#include “\mpc\include\16c74.h” [* c74 header file */
#include “\mpc\math.h”

#include “\mpc\apnotes\analogio.c” /* analog I/O module */
#include “\mpc\apnotes\pictone.c” /* tone generation module */

bits pwm1;
/* Function Prototypes */

void main_isr();
void timer2_isr();

/* 16C74 1/O port bit declarations */

/* global program variables */

char tmr2_cntr; [* timer 2 interrupt counter */
char delay_cntr; [* delay time counter (10ms ticks)*/

/* Tone Coefficients for DTMF Tones */

const DTMF_1[4]={30, 51, 48, 27};
const DTMF_2[4]={30, 51, 56, 19};
const DTMF_3[4]={30, 51, 64, 11};
const DTMF_4[4]={33, 48, 48, 27},
const DTMF_5[4]={33, 48, 56, 19};
const DTMF_6[4]={33, 48, 64, 11};
const DTMF_7[4]={36, 45, 48, 27},
const DTMF_8[4]={36, 45, 56, 19};
const DTMF_9[4]={36, 45, 64, 11};
const DTMF_0[4]={40, 41, 56, 19};
const DTMF_star[4]={40, 41, 48, 27},
const DTMF_pound[4]={40, 41, 64, 11};
const DTMF_A[4]={30, 51, 75, 2},
const DTMF_B[4]={33, 48, 75, 2},
const DTMF_C[4]={36, 45, 75, 2}
const DTMF_DJ[4]={40, 41, 75, 2},

/
* main isr - 16C74 vectors to 0004h (MPC __INT() function) on any interrupt *
* assembly language routine saves W and Status registers then tests flags in
* INTCON to determine source of interrupt. Routine then calls appropriate isr.
* Restores W and status registers when done.

DS00616A-page 14 0 1997 Microchip Technology Inc.

ANG16

void __INT(void)

{
if(PIRL.TMR2IF){ [* timer 2 interrupt ? */
PIR1.TMR2IF=0; /* clear interrupt flag */
timer2_isr(); /* and call timer 2 isr */
}

/* Restore W, Wimage, and STATUS registers */

#asm
BCF STATUS,RPO ;Bank 0
MOVF temp_PCLATH, W
MOVWF PCLATH ;PCLATH restored
MOVF temp_WImage, W
MOVWF __ Wimage ,__WImage restored
MOVF temp_FSR, W
MOVWF FSR ;FSR restored
SWAPF temp_STATUS,W
MOVWF STATUS ;STATUS restored
SWAPF temp_WREG,F
SWAPF temp_WREG,W ;W restored
#endasm
}

/
* timer 2 isr - provides PWM sample clock generation and millisecond counter
* for tone routine

/
void timer2_isr(void)

{
sample_flag=active; /* set sample flag (150us clock) */
PORTB.7=!IPORTB.7; /* toggle PORTB.7 at sample rate */
if(tmr2_cntr++==7){ /* check counter */
tmr2_cntr=0; /* reset if max */
ms_cntr++; /* and increment millisecond ticks */
}
}
void main()
{

/* initialize OPTION register */
OPTION=0b11001111;

/* initialize INTCON register (keep GIE inactive!) */
INTCON=0b00000000; [* disable all interrupts */

/* initialize PIE1 and PIE2 registers (peripheral interrupts) */
PIE1=0b00000000; [* disable all interrupts */
PIE2=0b00000000;

/* initialize TLCON and T2CON registers */

T1CON=0b00000000; /* T1 not used */
T2CON=0b00101000; /* T2 postscaler=5 */
[* initialize CCPxCON registers */
CCP1CON=0b00001100; /* set CCP1CON for PWM mode */
CCP2CON=0b00001100; /* set CCP2CON for PWM mode (not used in demo) */

/* initialize SSPCON register */
SSPCON=0b00000000; [* serial port - not used */

0 1997 Microchip Technology Inc. DS00616A-page 15

ANG16

/* initialize ADCONX registers */
ADCONO0=0b00000000; /* A-D converter */
ADCON1=0b00000010;

/* initialize TRISX register (port pins as inputs or outputs) */
TRISA=0b00001111,;
TRISB=0b00000000;
TRISC=0b10000000;
TRISD=0b00001111;
TRISE=0b00000000;

[* clear watchdog timer (not used) */
CLRWDT();

[* initialize program variables */
tmr2_cntr=0;

[* initialize program bit variables */
FLAGS=0b00000000;

/* intialize output port pins (display LED’s on demo board) */
PORTB=0;

/* enable interrupts... */

INTCON.ADIE=1; /* Peripheral interrupt enable */
INTCON.GIE=1; /* global interrupt enable */

init_ PWM(0x3e); [* initialize PWM port */
PORTB=0x01; /* write a1 to PORTB */
al=DTMF_1[0]; /*and send a DTMF “1" */

b1=DTMF_1[1];

a2=DTMF_1[2];

b2=DTMF_1[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x02; /* write a 2 to PORT B */

al=DTMF_2[0]; /* and send a DTMF “2" */

b1=DTMF_2[1];

a2=DTMF_2[2];

b2=DTMF_2[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x03; /* write a 3 to PORTB */

al=DTMF_3I0]; /* and send a DTMF “3" */

b1=DTMF_3[1];

a2=DTMF_3[2];

b2=DTMF_3[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x04; /* write a 4 to PORTB */
al=DTMF_4[0]; /*and send a DTMF “4” */
b1=DTMF_4[1];

DS00616A-page 16

0 1997 Microchip Technology Inc.

ANG16

a2=DTMF_4[2];
b2=DTMF_4[3];
duration=150;

tone();
Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */
PORTB=0x05; /* write a 5 to PORTB */

al=DTMF_5]0]; /* and send a DTMF “5” */

b1=DTMF_5[1];

a2=DTMF_5[2];

b2=DTMF_5[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x06; [* write a 6 to PORTB */

al=DTMF_6[0]; /*and send a DTMF “6” */

b1=DTMF_6[1];

a2=DTMF_6[2];

b2=DTMF_6[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x07; /* write a 7 to PORTB */

al=DTMF_7[0]; /* and send a DTMF “7" */

b1=DTMF_7[1];

a2=DTMF_7[2];

b2=DTMF_7[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x08; [* write a 8 to PORTB */

al=DTMF_8I0]; /* and send a DTMF “8”" */

b1=DTMF_8[1];

a2=DTMF_8J[2];

b2=DTMF_8[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x09; /* write a 9 to PORTB */

al=DTMF_9[0]; /* and send a DTMF “9” */

b1=DTMF_9[1];

a2=DTMF_9[2];

b2=DTMF_9[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0; /* write a 0 to PORTB */

al=DTMF_0I[0]; /* and send a DTMF “0” */

b1=DTMF_O[1];

a2=DTMF_0[2];

b2=DTMF_0[3];

duration=150;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */
Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

0 1997 Microchip Technology Inc.

DS00616A-page 17

ANG16

PORTB=0x0e¢; /* write a 0xOe to PORTB */

al=DTMF_star[0]; /* and send a DTMF “*" */

b1=DTMF_star[1];

a2=DTMF_star[2];

b2=DTMF_star[3];

duration=250;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0f; /* write a 0x0f to PORTB */

al=DTMF_pound[0]; /* and send a DTMF “#" */
b1=DTMF_pound[1];

a2=DTMF_pound[2];

b2=DTMF_pound[3];

duration=250;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */
Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0a; [* write a 0x0a to PORTB */

al=DTMF_AJ[0]; /* and send a DTMF “A” */

b1=DTMF_A[1];

a2=DTMF_A[2];

b2=DTMF_A[3];

duration=250;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0b; /* write a 0x0b to PORTB */

al=DTMF_B[0]; /*and send a DTMF “B” */

b1=DTMF_B[1];

a2=DTMF_BJ2];

b2=DTMF_B[3];

duration=250;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0c; [* write a 0x0c to PORTB */

al=DTMF_CIO0]; /*and send a DTMF “C” */

b1=DTMF_CI1];

a2=DTMF_C[2];

b2=DTMF_CJ[3];

duration=250;

tone();

Delay_Ms_20MHz(200); /* delay 100ms (200/2 using MPC delays) */

PORTB=0x0d; /* write a 0x0d to PORTB */
al=DTMF_DI0]; /*and send a DTMF “D” */
b1=DTMF_DI[1];

a2=DTMF_D[2];

b2=DTMF_DI[3];

duration=250;

tone();
PORTB=0; /* write a 0 to PORTB */
while(1){} /* done (loop) */

}

DS00616A-page 18

0 1997 Microchip Technology Inc.

ANG16

required).

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not

APPENDIX D: IR FILTER MODULE

/
* Second-Order IIR Filter Module

*

* Written for “Digital Signal Processing with the PIC16C74” Application Note.

*

* This routine implements an IIR filter using a second order difference
* equation of the form:

*

*y(n) = bO*x(n)+b1*x(n-1)+b2*x(n-2)+al*y(n-1)+a2*y(n-2)
*

* D. Mostowfi 3/95

#include “\mpc\apnotes\dbl_math.c”

bits X_n; /* input sample x(n) */

unsigned long y_n; [* output sample y(n) */

unsigned long x_n_1; [* x(n-1) */

unsigned long x_n_2; I*x(n-2) */

unsigned long y_n_1; /*y(n-1) */

unsigned long y_n_2; I*y(n-2) */

char rmndr_h; /* high byte of remainder from multiplies */
char rmndr_l; /* low byte of remainder from multiplies */
#define AL_H 0xd2 [* filter coefficients */

#define A1_L 0x08 [* for 60Hz notch filter */

#define A2_H 0x11 [* Fs= 1kHz */

#define A2_L 0x71
#define BO_H 0x18
#define BO_L Oxbb
#define B1_H 0xd2
#define B1_L 0x08
#define B2_H 0x18
#define B2_L 0xb9

/

* Filter initialization - clears all taps in memory.
*

* usage:
* - call init_filter()
* use at program initialization

void init_filter(){

#asm
crf yon ; clear output value
crf y n+l
crf yn1 ; and all filter “taps”
crf 'y n 1+1 ;
crf yn?2 ;
crf y n_2+1 ;
crf xn_1 ;
crf x_n_1+1
cirff x_n_2 ;

crf x_n_2+1 ;

#endasm

0 1997 Microchip Technology Inc.

DS00616A-page 19

ANG16

/

* Assembly language subroutines for main filter() function

#asm

; Add Remainder subroutine - adds remainder from multiplies to ACCc

add_rmndr:
btfss sign,7 ; check if number is negative
goto add_r_start ;gotoadd_r_startif not
comf ACCcLO ; iIf s0, negate number in ACC
incf ACCcLO ;
btfsc STATUS,Z ;
decf ACCcHI ;

comf ACCcHI ;
btfsc STATUS,Z ;
comf ACCbLO ;

incf ACCbLO ;
btfsc STATUS,Z ;
decf ACCbHI ;

comf ACCbHI ;

add_r_start:
movf rmndr_I,W ; get low byte of remainder
addwf ACCclLO ; and add to ACCcLO
btfsc STATUS,C ; check for overflow
incf ACCcHI ; if overflow, increment ACCcHI
movf rmndr_h,W ; get high byte of remainder
addwf ACCcHI ; and add to ACCcHI
btfsc STATUS,C ; check for overflow
incf ACCbLO ; if overflow, increment ACCbLO
btfss sign,7 ; check if result negative
goto add_r_done ;ifnot, goto add_r_done
comf ACCcLO ; If s0, negate result
incf ACCcLO ;
btfsc STATUS,Z ;
decf ACCcHI ;

comf ACCcHI ;
btfsc STATUS,Z ;
comf ACCbLO ;

incf ACCbLO ;
btfsc STATUS,Z ;
decf ACCbHI ;

comf ACCbHI ;

add_r_done:

; Decimal Adjust Subroutine - used after each Q15 multiply to convert Q30 result

retw 0 ; done

; to Q15 number

dec_adjust:
bcf sign,7 ; clear sign
btfss ACCbHI,7 ; test if number is negative
goto adjust ; go to adjust if not
bsf sign,7 ; set sign if negative
comf ACCcLO ; and negate number
incf ACCcLO

DS00616A-page 20

0 1997 Microchip Technology Inc.

ANG16

btfsc STATUS,Z
decf ACCcHI
comf ACCcHI
btfsc STATUS,Z
comf ACCbLO

incf ACCbLO
btfsc STATUS,Z
decf ACCbHI
comf ACCbHI
adjust:
rlf ACCcHI ; rotate ACC left 1 bit
rif ~ ACCbLO ;
rif ACCbHI ;
btfss sign,7 ; check if result should be negative
goto adj_done ; if not, done
comf ACCbLO ; if result negative, negate ACC
incf ACCbLO
btfsc STATUS,Z
decf ACCbHI
comf ACCbHI
adj_done:
retw O ; done

; Output Scaling Routine - used to scale output samples by factors of

; 2, 4, or 8 at end of filter routine

scale_y n:
bcf sign,7 ; Clear sign,7
btfss y n+1,7 ; test if y(n) negative
goto start_scale ; go to start_scale if not
bsf sign,7 ; set sign,7 if negative
comf yn ; and compliment y(n)
incf yn ;
btfsc STATUS,Z ;
decf y n+l ;

comf y n+l ;

start_scale:
bcf STATUS,C ; clear carry
rif y_n+1 ; and rotate y(n) left
rlf y.n ;
bcf STATUS,C ;
rif y_n+1 ;
rlf y.n ;
bcf STATUS,C ;
rif y_n+1 ;
rlf y.n ;
btfss sign,7 ; test if result is negative
goto scale_y done ;go to scale_y_done if not
comf yn ; negate y(n) if result is negative
incf yn ;
btfsc STATUS,Z ;
decf y n+l ;

comf y n+l ;

scale_y_done:
retiw 0 ; done

#endasm

0 1997 Microchip Technology Inc.

DS00616A-page 21

ANG16

/

* Filter function - filter takes current input sample, x(n), and outputs next

* output sample, y(n).

* usage:

* - write sample to be filtered to x_n

* - call filter()

* - output is in MSB of y_n (y_n=MSB, y_n+1=LSB)
*

void filter({

#asm
cif 'y n ; clear y(n) before starting
clrf 'y n+l ;
clrf ACCbLO ; move x(n) to ACCbHI
movf x_n,W ; (scale 8 bit - 16 bit input)
movwf ACCbHI ;
moviw BO_H ; get coefficient b0
movwf ACCaHI ; Y(n)=b0*x(n)

moviw BO_L ;
movwf ACCalLO ;
call D_mpyF ;

movf ACCcHI,W ; save remainder from multiply

movwf rmndr_h

movf ACCcLO,W ;
movwf rmndr_| ;
call dec_adjust ;
movf ACCbHI,W

movwf y n+1 ;

movf ACCbLO,W ;

movwf y n ;

moviw B1_H ; get coefficient bl
movwf ACCaHI ; y(n)=y(n)+b1*x(n-1)

moviw B1_L ;

movwf ACCalLO ;
movf x_n_1+1W :
movwf ACCDbHI ;
movf x_n_1,W ;
movwf ACCbLO

call D_mpyF ;
call add_rmndr ; add in remainder from previous multiply
movf ACCcHI,W ; and save new remainder

movwf rmndr_h ;
movf ACCcLO,W ;
movwf rmndr_| ;
call dec_adjust ;
movf y_n+1,W ;
movwf ACCaH]I ;
movf y nW :
movwf ACCalLO ;
call D_add ;
movf ACCbHI,W
movwf y n+1 ;
movf ACCbLO,W ;
movwf y n ;

moviw B2_H ; get coefficient b2
movwf ACCaHI ; y(n)=y(n)+b2*x(n-2)
moviw B2 L ;

movwf ACCalLO ;

movf x_n_2+1W

DS00616A-page 22

0 1997 Microchip Technology Inc.

ANG16

movwf ACCbHI
movf x_n_2,W
movwf ACCbLO
call D_mpyF

call add_rmndr
movf ACCcHI,W
movwf rmndr_h
movf ACCcLO,W
movwf rmndr_|
call dec_adjust
movf y_n+1,W
movwf ACCaHI
movf y_nW
movwf ACCalLO
call D_add ;
movf ACCbHI,W
movwf y n+1
movf ACCbLO,W
movwf y n

moviw Al H
movwf ACCaHI
moviw Al _L
movwf ACCalLO
movf y n_1+1,W
movwf ACCDHI
movf y n_1,W
movwf ACCbLO
call D_mpyF
call add_rmndr
movf ACCcHI,W
movwf rmndr_h
movf ACCcLO,W
movwf rmndr_|
call dec_adjust
movf y_n+1,W
movwf ACCaHI
movf y nW
movwf ACCalLO
call D_sub ;
movf ACCbHI,W
movwf y n+1
movf ACCbLO,W
movwf y n

moviw A2_H
movwf ACCaH]I
moviw A2 L
movwf ACCalLO
movf y n_2+1W
movwf ACCbHI
movf y_n_2,W
movwf ACCbLO
call D_mpyF
call add_rmndr
call dec_adjust
movf y_n+1,W
movwf ACCaHI
movf y nW
movwf ACCalLO
call D_sub ;
movf ACCbHI,W
movwf y n+1
movf ACCbLO,W
movwf y n

i

; add in remainder from previous multiply

; and save new remainder

; get coefficient al
; y(n)=y(n)+al*y(n-1)

; add in remainder from previous multiply

; and save new remainder

; get coefficient a2
; y(n)=y(n)+a2*y(n-2)

0 1997 Microchip Technology Inc.

DS00616A-page 23

ANG16

movf x_n_1,W ; X(n-2)=x(n-1)
movwf x_n_2 ;
movf x_n_1+1W ;
movwf x_n_2+1 ;

movf x_n,W ; X(n-1)=x(n)
movwf x_n_1+1 ;

crf xn_1 3

movf y n 1W ; ¥(n-2)=y(n-1)

movwf y n_2 ;
movf y n_1+1W ;
movwf y n_2+1 ;
movf y nW ; y(n-1)=y(n)
movwf y n_1 ;
movf y_n+1,W ;
movwf y n_1+1 ;

call scale_y n ;

movf y_n+1,W ; shift Isb of y_n to msb
movwf y n ;
#endasm

}

DS00616A-page 24 0 1997 Microchip Technology Inc.

ANG16

required).

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not

APPENDIX E: NOTCH FILTER

/
* 60 Hertz Notch Filter

*

* Written for “Digital Signal Processing with the PIC16C74” Application Note.
*

* This example program use the filter() function to implement a 60Hz notch

* filter. TO is used to generate a 1kHz sample clock. The program samples the
* input signal x(n) on A-D channel 1, calls the filter routine signal, and

* outputs y(n) to PWM channel 1.

*

* If FILTER set to 0, performs straight talkthru from A-D to PWM output.
* TO period can be changed to cary the sample rate.

*

* D. Mostowfi 4/95

#include “\mpc\include\16c74.h” [* c74 header file */

#include “\mpc\apnotes\analogio.c” /* analog I/O module */
#include “\mpc\apnotesiir_filt.c” /*iir filter module */

#define FILTER 1
/* Function Prototypes */

void main_isr();
void timer0_isr();

/
* main isr - 16C74 vectors to 0004h (MPC __INT() function) on any interrupt *
* assembly language routine saves W and Status registers then tests flags in
* INTCON to determine source of interrupt. Routine then calls appropriate isr.
* Restores W and status registers when done.

/
void __ INT(void)

{
ifINTCON.TOIF){ /* timer O interrupt ? */
INTCON.TOIF=0; /* clear interrupt flag */
timer0_isr(); /* and call timer O isr */
}
/* Restore W, Wimage, and STATUS registers */
#asm
BCF STATUS,RPO ;Bank 0
MOVF temp_PCLATH, W
MOVWF PCLATH ;PCLATH restored
MOVF temp_WImage, W
MOVWF __ WIimage ;WImage restored
MOVF temp_FSR, W
MOVWF FSR ;FSR restored
SWAPF temp_STATUS,W
MOVWF STATUS ;RPO restored
SWAPF temp_WREG,F
SWAPF temp_WREG,W ;W restored
#endasm
}

/
* timer O interrupt service routine

void timer0_isr(void)

0 1997 Microchip Technology Inc.

DS00616A-page 25

ANG16

{
TMRO0=100; /* reload value for 1ms period */
PORTB.0=!PORTB.0; /* toggle PORTB.O */
sample_flag=active; [* set sample flag */

}

void main()

{

/* initialize OPTION register */
OPTION=0b00000011, [* assign prescaler to TO */

/* initialize INTCON register (keep GIE inactive!) */
INTCON=0b00000000; /* disable all interrupts */

/* initialize PIE1 and PIE2 registers (periphreal interrupts) */
PIE1=0b00000000; [* disable all peripheral interrupts */
PIE2=0b00000000;

/* initialize TLCON and T2CON registers */
T1CON=0b00000000; /* T1 not used */
T2CON=0b00000000; /* T2 not used */

/* initialize CCPxCON registers */
CCP1CON=0b00001100; /* set CCP1CON for PWM mode */
CCP2CON=0b00000000; /* CCP2CON=0 (PWM 2 not used) */

/* initialize SSPCON register */
SSPCON=0b00000000; /* serial port - not used */

/* initialize ADCONX registers */
ADCONO0=0b00000000; /* a-d converter */
ADCON1=0b00000010;

/* initialize TRISx register (port pins as inputs or outputs) */
TRISA=0b00001111;
TRISB=0b00000000;
TRISC=0b11111011;
TRISD=0b11111111;
TRISE=0b11111111;

[* clear watchdog timer (not used) */
CLRWDT();

/* initialize program bit variables */
FLAGS=0b00000000;

/* intialize output port pins */
PORTB=0;

/* enable interrupts... */

INTCON.TOIE=1,; [* peripheral interrupt enable */
INTCON.GIE=1; /* global interrupt enable */
init_PWM(0x40); [* init PWM port */
init_filter(); [* init filter */
while(1){
while(lsample_flag){} /* wait for sample clock flag to be set */
sample_flag=0; /* clear sample clock flag */

x_n=get_sample(1); /*read ADC channel 1 into x(n) */
if(FILTER==1){ [* if filter enabled */

filter(); [* call filter routine */

else{ * or else write x(n) to y(n) (talkthru) */
y_n=x_n;

}

write_ PWM((char)y_n,0); /* write y_n to PWM port 1 */

DS00616A-page 26

0 1997 Microchip Technology Inc.

ANG16

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX F: 8-BIT MULTIPLY AND SCALING ROUTINES

/

* 8 bit Multiply and Scaling Routines
*

* Written for “Digital Signal Processing with the PIC16C74” Application Note.

*

*

* This module provides a 8 bit signed multiply and scaling routine for the
* PICTONE.C tone generation program. The routines are adapted from “Math
* Routines for the 16C5x” in Microchip’s Embedded Controller Handbook.

*

* All numbers are assumed to be signed 2’s compliment format.

*

* D. Mostowfi 11/94

char multend;
char multplr;
char result_h;
char result_I;
char sign;

#asm

/* 8 bit multiplicand */

[* 8 bit multiplier */

[* result - high byte */

/* result - low byte */
[* result sign */

; 8x8 signed multiply routine
; called from PICTONE.C module (assembly language routine)

.MACRO mult_core bit

btfss multplr,bit
goto \no_add

movf multcnd,W
addwf result_h,F

\no_add:

rrf result_h
rrf result_|

.ENDM

_8x8smul:

movf multcnd,W
xorwf multplr, W
movwf sign

btfss multcnd,7
goto chk_multplr
comf multend
incf multcnd

chk_multplr:

btfss multplr,7
goto multiply
comf multplr
incf multplr

multiply:

movf multend,W
bcf STATUS,C
clrf result_h

clrf result_|
mult_core 0
mult_core 1

; get multiplicand
; and xor with multiplier
; and save sign of result
; check sign bit of multiplicand
; go and check multipier if positive
; negate if negative

; check sign bit of multiplier
; go to multiply if positive
; negate if negative

; set up multiply registers

1

; and do multiply core 8 times

0 1997 Microchip Technology Inc.

DS00616A-page 27

ANG16

mult_core 2 ;
mult_core 3 ;
mult_core 4 ;
mult_core 5 ;
mult_core 6 ;
mult_core 7 ;

set_sign:
btfss sign,7 ; test sign to see if result negative
retw 0 ; done if not! (clear W)
comf result_| ; hegate result if sign set
incf result_| ;
btfsc STATUS,Z ;
decf result_h ;
comf result_h ;

retw 0 ; done (clear W)

; Scaling Routine (used after a multiply to scale 16 bit result)

; Operates on result_h and result_|I - final result is in result_|

; routine divides by 32 to restore Q7 result of 2*b*y(n-1) in tone
; generation algorithm

scale_16:

btfss sign,7 ; test if negative (sign set from mult)
goto start_shift ; go to start shift if pos.

comf result_| ; hegate first if neg.

incf result_| ;

btfsc STATUS,Z ;
decf result_h ;
comf result_h ;

start_shift:
bcf STATUS,C ; clear status
rrf - result_h ; and shift result left 5x (/32)
rrf - result_| ;
rf - result_h ;
rf - result_| ;
rrf - result_h ;
rf result_| ;
rrf - result_h ;
rrf - result_| ;
rf - result_h ;
rf - result_| ;
btfss sign,7 ; test if result negative
goto scale_done ; done if not negative
comf result_| ; hegate result if negative
incf result_| ;

btfsc STATUS,Z ;

decf result_h ;

comf result_h ;
scale_done: ;

retw 0 ; done (clear W)

#endasm

DS00616A-page 28

0 1997 Microchip Technology Inc.

ANG16

Please check the Microchip BBS for the latest version of the source code. Microchip’s Worldwide Web Address:
www.microchip.com; Bulletin Board Support: MCHIPBBS using CompuServe® (CompuServe membership not
required).

APPENDIX G:DOUBLE PRECISION MATH ROUTINES

/

* Double Precision Math Routines

*

* This module contains assembly language routines from “Math Routines for the
* 16C5x” from Microchip’s Embedded Controller Handbook that have been adapted

* for use with the Bytecraft MPC C Compiler.

*

* Routines are used IIR_FILT.C module written for “Digital Signal Processing

* with the PIC16C74” Application Note.

*

* D. Mostowfi 3/95

/*

Start of converted MPASM modules:

Double Precision Addition & Subtraction

Addition : ACCb(16 bits) + ACCa(16 bits) -> ACCb(16 bits)
(a) Load the 1st operand in location ACCalLO & ACCaHI (16 bits)
(b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits)
(c) CALL D_add
(d) The result is in location ACCbLO & ACCbHI (16 bits)

Performance :
Program Memory : 07
Clock Cycles 08

Subtraction : ACCb(16 bits) - ACCa(16 bits) -> ACCb(16 bits)
(a) Load the 1st operand in location ACCaLO & ACCaHI (16 bits)
(b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits)
(c) CALL D_sub
(d) The result is in location ACCbLO & ACCbHI (16 bits)

Performance :
Program Memory : 14
Clock Cycles 17

*

char ACCalLO; /lequ 10 changed equ statements to C char variables
char ACCaHl; /lequ 11
char ACCbLO; /lequ 12
char ACCbHI; /lequ 13

#asm [* start of in-line assembly code */

include “mpreg.h” commented out these
org O two lines (MPASM specific)

Double Precision Subtraction (ACCb - ACCa -> ACCb)

D _sub call neg_A2 ; At first negate ACCa; Then add

O

1997 Microchip Technology Inc.

DS00616A-page 29

ANG16

Double Precision Addition (ACCb + ACCa -> ACCb)

D_add movf ACCalLOW

neg_A2 comf ACCaLO

addwf ACCbLO ;add Isb
btfsc STATUS,C ;add in carry
incf ACCbHI

movf ACCaHI,C

addwf ACCbHI ;add msb
retw 0

; hegate ACCa (-ACCa -> ACCa)
incf ACCalLO

btfsc STATUS,Z

decf ACCaHI

comf ACCaHI

retw 0

Double Precision Multiplication

(Optimized for Speed : straight Line Code)

Multiplication : ACCDb(16 bits) * ACCa(16 bits) -> ACCb,ACCc (32 bits)

(a) Load the 1st operand in location ACCaLO & ACCaHI (16 bits)

(b) Load the 2nd operand in location ACCbLO & ACCbHI (16 bits)

(c) CALL D_mpy

(d) The 32 bit result is in location (ACCbHI,ACCbLO,ACCcHI,ACCcLO)

Performance :
Program Memory : 240
Clock Cycles : 233

Note : The above timing is the worst case timing, when the
register ACCb = FFFF. The speed may be improved if
the register ACCb contains a number (out of the two
numbers) with less number of 1s.

The performance specs are for Unsigned arithmetic (i.e,
with “SIGNED equ FALSE *).

#endasm

/lchar ACCalLO; equ 10 Commented out - already defined in Dbl_add
/lchar ACCaHI; equ 11

/lchar ACCbLO; equ 12

/lchar ACCbHI; equ 13

char ACCcLO; /lequ 14 changed equ statements to C char variables
char ACCcHI; /lequ 15

char ACCdLO; /lequ 16

char ACCdHI; /lequ 17

chartemp; /lequ 18

charsign; /lequ 19

#asm

include “mpreg.h” commented out these
org O two lines (MPASM specific)

SIGNED equ 1

; Set This To ‘TRUE' if the routines
; for Multiplication & Division needs
; to be assembled as Signed Integer
; Routines. If ‘FALSE' the above two

DS00616A-page 30

0 1997 Microchip Technology Inc.

ANG16

; ; routines (D_mpy & D_div) use
; ; unsigned arithmetic.

; multiplication macro

.MACRO mulMac ; changed macro to conform to MPC macro

; LOCAL NO_ADD ; language - declaration is different
; ; and macro labels are preceded by “/”

rrf ACCdHI ; rotate d right
rrf ACCdLO
btfss STATUS,C ; need to add?
goto \NO_ADD ; no addition necessary
movf ACCalLO,W ; Addition (ACCb + ACCa -> ACCb)
addwf ACCbLO ;add Isb
btfsc STATUS,C ; add in carry
incf ACCbHI
movf ACCaHI,W
addwf ACCDbHI ;add msb
\NO_ADD rrf ACCbHI
rrf ACCbLO
rrf ACCcHI
rrf ACCcLO
.ENDM ; end of modified macro

; Double Precision Multiply (16x16 -> 32)
; (ACCb*ACCa -> ACCb,ACCc) : 32 bit output with high word

; in ACCb (ACCbHI,ACCbLO) and low word in ACCc (ACCcHI,ACCcLO).

D_mpyF ;results in ACCh(16 msb’s) and ACCc(16 Isb’s)

.IF SIGNED
CALL S_SIGN
.ENDIF

call setup
; use the mulMac macro 16 times
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac
mulMac

IF SIGNED

btfss sign,7

retiw 0

comf ACCcLO ; hegate ACCa (-ACCa -> ACCa)
incf ACCcLO

btfsc STATUS,Z

decf ACCcHI

comf ACCcHI

0 1997 Microchip Technology Inc.

DS00616A-page 31

ANG16

btfsc STATUS,Z
neg_B comf ACCbLO ; negate ACCh

incf ACCbLO
btfsc STATUS,Z
decf ACCbHI
comf ACCbHI
retw 0

.ELSE
retw 0

.ENDIF

setup moviw 16 ; for 16 shifts
movwf temp
movf ACCbHI,W ;move ACCb to ACCd
movwf ACCdHI
movf ACCbLO,W
movwf ACCdLO
clrf ACCbHI
clrf ACCbLO
retw 0

neg_A comf ACCaLO ; negate ACCa (-ACCa -> ACCa)

incf ACCalLO
btfsc STATUS,Z
decf ACCaHI
comf ACCaHI
retiw 0

; Assemble this section only if Signed Arithmetic Needed
AF SIGNED

S_SIGN movf ACCaHI,W
xorwf ACCbHI,W
movwf sign
btfss ACCDbHI,7 ; if MSB set go & negate ACCb
goto chek_A

comf ACCbLO ; negate ACCh
incf ACCbLO

btfsc STATUS,Z

decf ACCbHI

comf ACCbHI

chek_A btfss ACCaHI,7 ; if MSB set go & negate ACCa

retw 0
goto neg_A

.ENDIF

#endasm

DS00616A-page 32

0 1997 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

The PICmicro family meets the specifications contained in the Microchip Data Sheet.

Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,
when used in the intended manner and under normal conditions.

There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

Microchip is willing to work with the customer who is concerned about the integrity of their code.

Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable”.

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

DNV Certification, Inc. DNV MSC

ANSI+-RAB

ams
*

7

DINW

>
~
~
=
m
o
-
m
o

1SO 9001 / QS-9000
REGISTERED FIRM

The Netherlands
Accredited by the RvA

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microlD, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEYV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

fé Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizonain July 1999. The
Company'’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

© 2002 Microchip Technology Inc.

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627

Web Address: http://www.microchip.com
Rocky Mountain

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307
Boston

2 Lan Drive, Suite 120

Westford, MA 01886

Tel: 978-692-3848 Fax: 978-692-3821
Chicago

333 Pierce Road, Suite 180

Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075
Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924
Detroit

Tri-Atria Office Building

32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334

Tel: 248-538-2250 Fax: 248-538-2260
Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902

Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles

18201 Von Karman, Suite 1090

Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338
New York

150 Motor Parkway, Suite 202
Hauppauge, NY 11788

Tel: 631-273-5305 Fax: 631-273-5335
San Jose

Microchip Technology Inc.

2107 North First Street, Suite 590

San Jose, CA 95131

Tel: 408-436-7950 Fax: 408-436-7955
Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd

Suite 22, 41 Rawson Street

Epping 2121, NSW

Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing

Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office

Unit 915

Bei Hai Wan Tai Bldg.

No. 6 Chaoyangmen Beidajie

Beijing, 100027, No. China

Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu

Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office

Rm. 2401, 24th Floor,

Ming Xing Financial Tower

No. 88 TIDU Street

Chengdu 610016, China

Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou

Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office

Unit 28F, World Trade Plaza

No. 71 Wusi Road

Fuzhou 350001, China

Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai

Microchip Technology Consulting (Shanghai)
Co., Ltd.

Room 701, Bldg. B

Far East International Plaza

No. 317 Xian Xia Road

Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen

Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office

Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu

Shenzhen 518001, China

Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong

Microchip Technology Hongkong Ltd.

Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road

Kwai Fong, N.T., Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431
India

Microchip Technology Inc.

India Liaison Office

Divyasree Chambers

1 Floor, Wing A (A3/A4)

No. 11, O’Shaugnessey Road

Bangalore, 560 025, India

Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K.

Benex S-1 6F

3-18-20, Shinyokohama

Kohoku-Ku, Yokohama-shi

Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore

Microchip Technology Singapore Pte Ltd.
200 Middle Road

#07-02 Prime Centre

Singapore, 188980

Tel: 65-334-8870 Fax: 65-334-8850
Taiwan

Microchip Technology Taiwan

11F-3, No. 207

Tung Hua North Road

Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS

Regus Business Centre

Lautrup hoj 1-3

Ballerup DK-2750 Denmark

Tel: 45 4420 9895 Fax: 45 4420 9910
France

Microchip Technology SARL

Parc d’Activite du Moulin de Massy

43 Rue du Saule Trapu

Batiment A - ler Etage

91300 Massy, France

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany

Microchip Technology GmbH
Gustav-Heinemann Ring 125

D-81739 Munich, Germany

Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy

Microchip Technology SRL

Centro Direzionale Colleoni

Palazzo Taurus 1 V. Le Colleoni 1

20041 Agrate Brianza

Milan, Italy

Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom

Arizona Microchip Technology Ltd.

505 Eskdale Road

Winnersh Triangle

Wokingham

Berkshire, England RG41 5TU

Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

© 2002 Microchip Technology Inc.

	Introduction
	Code Development Tools
	Number Representation and Math Routines
	A/D and D/A Conversion
	Tone Generation
	Digital Filters
	Digital Control

	Results and Conclusion
	References

	Appendix A: Analog I/O Module
	Appendix B: Tone Generation Module
	Appendix C: DTMF Tone Generation
	Appendix D: IIR Filter Module
	Appendix E: Notch Filter
	Appendix F: 8-Bit Multiply and Scaling Routines
	Appendix G: Double Precision Math Routines
	Worldwide Sales & Service

