

OLED DISPLAY MODULE

Application Notes

PRODUCT NUMBER

DD-9664FC-1B with EVK board

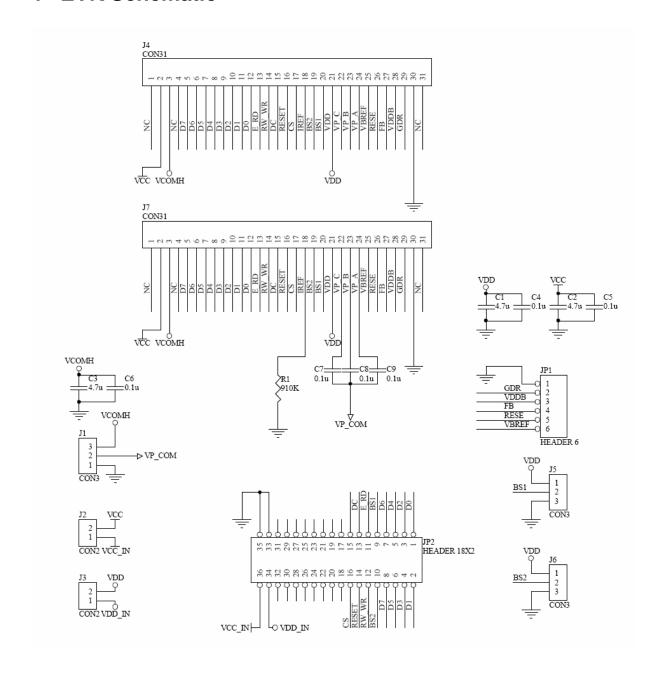
TABLE OF CONTENTS

1	EVK SCHEMATIC	4
2	SYMBOL DEFINITION	5
3	TIMING CHARACTERISTICS	6
4	CONNECTION BETWEEN OLED AND EVK	9
5	HOW TO USE THE DD-9664FC-1B	11
6	HOW TO USE THE DD-9664FC-1B	12
	6.1 RECOMMENDED INITIAL CODE	12

Product No.	DD-9664FC-1B	REV. A
Floduct No.		

Page	2 / 13
------	--------

REVISION RECORD


Rev.	Date	Page	Chapt.	Comment	ECR no.
A	06-Jul-06			First Issue	

Product No.	DD-9664FC-1B	REV. A
Flouuct No.		

Page 3 / 13

1 EVK Schematic

Product No.	DD-9664FC-1B	REV. A
Flouuct No.		

Page	4 / 13
------	--------

2 Symbol Definition

D0-D7: These pins are 8-bit bi-directional data bus to be connected to the MCU's data bus.

BS1, **BS2**: These input pins are used to configure MCU interface selection by appropriate logic setting, which is described in the following table. User can fix these pins by jumper (J5, J6) or can setup by programme.

	6800-parallel interface (8 bit)	8080-parallel interface (8 bit)	Serial interface
BS1	0	1	0
BS2	1	1	0

Table 1 – MCU Interface Selection Setting

E/RD#: This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin is used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the chip is selected.

When connecting to an 8080-microprocessor, this pin receives the Read (RD) signal. Data read operation is initiated when this pin is pulled low and the chip is selected. When serial interface is selected, this pin E(RD) must be connected to VSS.

R/W#: This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin is used as Read/Write (R/W) selection input. Read mode will be carried out when this pin is pulled high and write mode when low.

When 8080 interface mode is selected, this pin is the Write (WR) input. Data write operation is initiated when this pin is pulled low and the chip is selected. When serial interface is selected, this pin R/W must be connected to VSS.

D/C#: This pin is Data/Command control pin. When the pin is pulled high, the data at D0-D8 is treated as display data. When the pin is pulled low, the data at D0-D8 is transferred to the command register. For detail relationship to MCU interface signals, please refer to the timing characteristics diagrams at following pages and datasheet.

RES#: This pin is reset signal input. When the pin is low, initialization of the chip is executed.

CS#: This pin is the chip select input. The chip is enabled for MCU communication only when CS is pulled low.

VCC: This is the most positive voltage supply pin of the chip.

VDD: Power supply pin for logic operation of the driver.

GND: Power supply ground.

VCC_IN: This is the external most positive voltage supply. This pin should be shorted with VCC by Jumper 2 (J2)

VDD_IN: This is the external positive voltage supply. This pin should be shorted with VDD by Jumper 3 (J3)

Product No.	DD-9664FC-1B	REV. A	Dogo	5 / 12
Product No.			Page	3 / 13

3 Timing characteristics

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{ah}	Address Hold Time	0	•	-	ns
tosw	Write Data Setup Time	40	•	ı	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{ohr}	Read Data Hold Time	20	-		ns
t _{oH}	Output Disable Time	-	•	70	ns
tacc	Access Time	1	·	140	ns
PW _{csL}	Chip Select Low Pulse Width (read)	120	_	_	ns
I WV CSL	Chip Select Low Pulse Width (write)	60	_	_	113
PWcsh	Chip Select High Pulse Width (read)	60	_	_	ns
T VVCSH	Chip Select High Pulse Width (write)	60	_		113
t _R	Rise Time	-	-	15	ns
t⊦	Fall Time	-	-	15	ns

Table 2 6800-Series MPU Parallel Interface Timing Characteristics

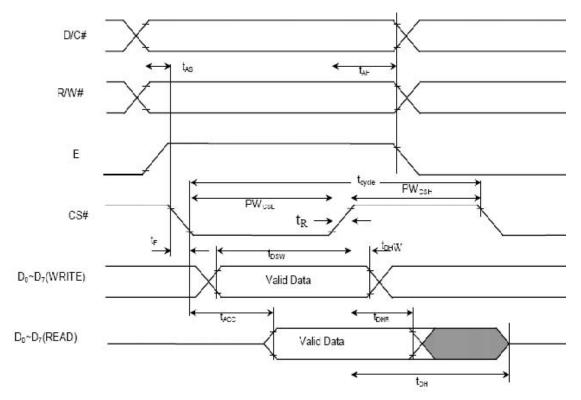


Figure 1 6800-series MPU parallel interface characteristics

Product No	DD-9664FC-1B	REV. A	
Product No.			

Page	6 / 13
------	--------

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
tohr	Read Data Hold Time	20	-	-	ns
tон	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{csL}	Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)	120 60	-	-	ns
PWcsh	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	60 60	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	•	-	15	ns

Table 3 8080-Series MPU Parallel Interface Timing Characteristics

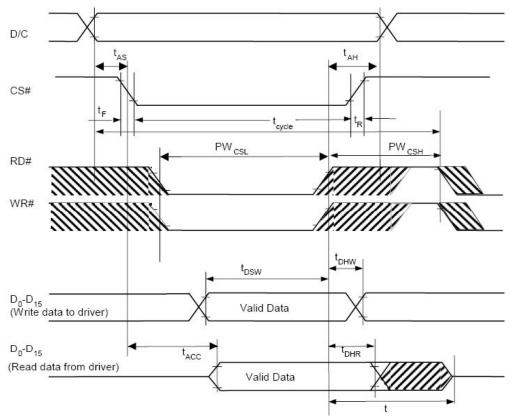


Figure 2 8080-series MPU parallel interface characteristics

Note: When 8 bit used: $D_0 \sim D_7$ instead.

Product No	DD-9664FC-1B	REV. A	Dogo	7 / 12
Product No.			Page	7 / 13

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	250	-	-	ns
t _{AS}	Address Setup Time	150	-	-	ns
t _{AH}	Address Hold Time	150	-	-	ns
t _{css}	Chip Select Setup Time	120	-	-	ns
t _{csh}	Chip Select Hold Time	60	-	-	ns
t _{DSW}	Write Data Setup Time	100		-	ns
t _{DHW}	Write Data Hold Time	100	•	-	ns
t _{clKL}	Clock Low Time	100	•	-	ns
t _{cLKH}	Clock High Time	100	-	-	ns
t _R	Rise Time		-	15	ns
t _F	Fall Time		-	15	ns

Table 4 Serial Interface Timing Characteristics

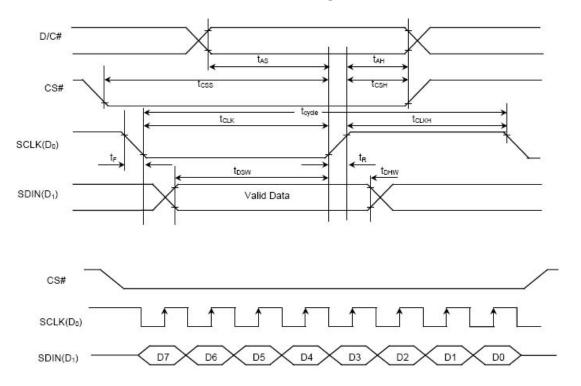


Figure 3 Serial interface characteristics

Product No.	DD-9664FC-1B	REV. A
Flouuct No.		

Page	8 / 13
------	--------

4 Connection Between OLED and EVK

Figure 4 EVK PCB and DD-9664FC-1B Module

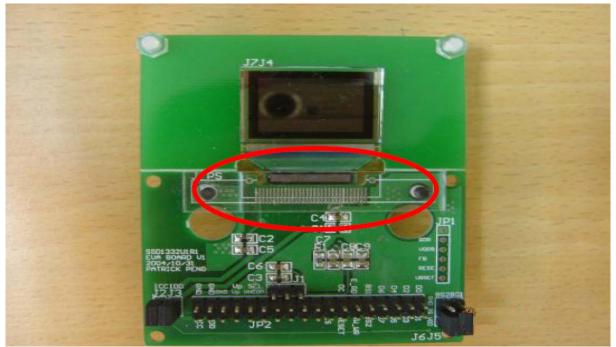


Figure 5 the DD-9664FC-1B and EVK assembled (Top view)

Product No	DD-9664FC-1B	REV. A	Dogo	0 / 13
Product No.			Page	9/13

As the package is TCP, the connector pads are double sided. When assembling the OLED, make sure it is in the right direction as shown in Figure 5 and tightened with the two hexagonal bolts.

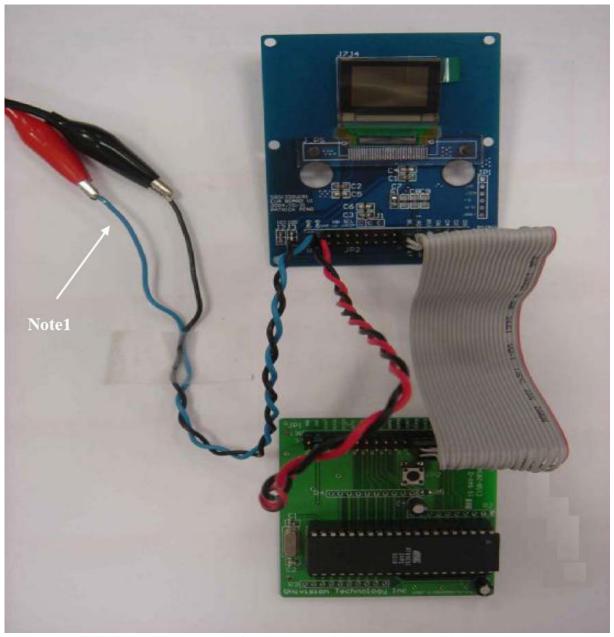
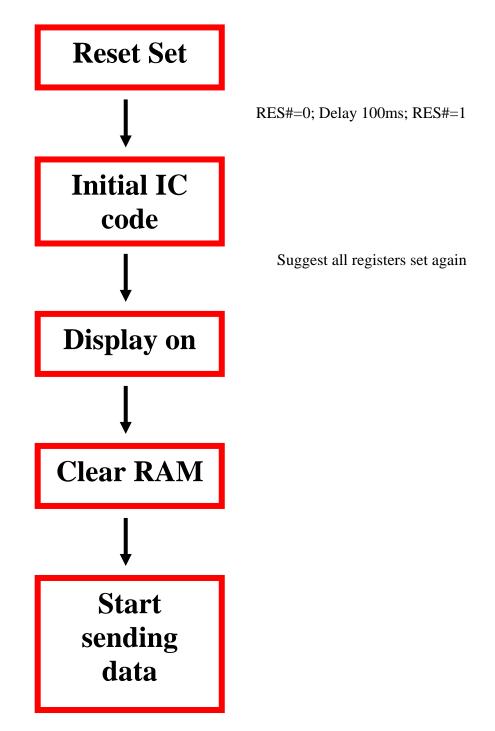



Figure 6 control MCU (not supplied) connected with EVK

Note 1: It is the external most positive voltage supply. In this sample is connected to power supply.

5 How to use the DD-9664FC-1B

Product No.	DD-9664FC-1B	REV. A
Floduct No.		

Page	11 / 13
------	---------

6 How to use the DD-9664FC-1B

6.1 Recommended Initial code

```
Void Initial_ic(void)
       IOCLR=0xfffffff;
                              //data=0
       IOSET=bBS1|bBS2|bRES|bCS|bE_RD;
       IOCLR=bD_C|bR_W;
       Reset_SSD1332();
       SubComOut (0xAE);
                              //Display off
       SubComOut (0xA0);
                              //Set Re-map / Color Depth
       SubComOut (0x70);
                              //65K 8bit B->G->R
                              // Set display start line
       SubComOut (0xA1);
                              //Start 00h
       SubComOut (0x00);
       SubComOut (0xA2):
                              //Set display offset
       SubComOut (0x00):
                              //Start 00h
       SubComOut (0xA4);
                              //Normal display
                              //Power saving mode
       SubComOut (0xB0):
       SubComOut (0x00);
                              //Normal mode
       SubComOut (0x87);
                              //Set master contrast
                              //No change
       SubComOut (0x0F);
                              //Set Duty
       SubComOut (0xA8);
       SubComOut (0x3F);
                              //63+1
                              //Set contrast A
       SubComOut (0x81);
       SubComOut (0x3C);
       SubComOut (0x82);
                              //Set contrast B
       SubComOut (0x37);
       SubComOut (0x83);
                              //Set contrast C
       SubComOut (0x73);
       SubComOut (0xBB);
                              //Set Vpa
       SubComOut (0x12);
       SubComOut (0xBC);
                              //Set Vpb
       SubComOut (0x13);
                              //Set Vpc
       SubComOut (0xBD);
       SubComOut (0x14);
       SubComOut (0xBE):
                              //Set VcomH
       SubComOut (0x46):
       SubComOut (0xAD):
                              //Set Master config
       SubComOut (0x8C);
                              //VcomH External
       SubComOut (0xB1);
                              //Set Pre-charge
       SubComOut (0x1F);
       SubComOut (0x81);
                              //Set contrast current for A
       SubComOut (0xC3);
                              // Color A
                              //Set contrast current for B
       SubComOut (0x82);
       SubComOut (0x82);
                              // Color B
       SubComOut (0x83);
                              //Set contrast current for C
       SubComOut (0xBE);
                              // Color C
       SubComOut (0xB3);
                              //Clock & frequency
       SubComOut (0xF0);
                              //Clock=Divser+1 frequency=fh
       SubComOut (0xAF);
                              //Display on
}
```

Product No.	DD-9664FC-1B	REV. A
Floduct No.		

Page 12 / 13


```
void Reset_SSD1332(void)
       IOCLR=bRES;
       Delay_1ms(10);
       IOSET=bRES;
void SubComOut (unsigned char out_command)
       IOCLR=bD_C;
       IOCLR=bCS;
       IOCLR=bR_W;
       IOCLR=0x000000ff;
       IOSET= out_command;
       IOSET=bR_W;
       IOSET=bCS;
void SubDataOut(unsigned char out_data)
       IOSET=bD_C;
       IOCLR=bCS;
       IOCLR = bR\_W;
       IOCLR=0x000000ff;
       IOSET=out_data;
       IOSETbR_W;
       IOSET=bCS;
void Delay_1ms(int Cycle)
       unsigned int i,k;
       for (i=0;i<Cycle;i++)
       for(k=0;k<0x2fff;k++);
}
```

Product No.	DD-9664FC-1B	REV. A

Page	13 / 13
------	---------