Two-circuit Limit Switch/Long-life Two-circuit Limit Switch WLWLM

Wide Range of Two-circuit Switches; Select One for the Operating Environment/ Application

- A wide selection of models are available, including the overtravel models with greater OT, indicator-equipped models for checking operation, low-temperature models, heat-resistant models, and corrosion-proof models.
- Microload models are added to the product lineup.
- Meets EN/IEC standards (only Switches with ground terminals and prewired connectors with DC specifications).
- Switches with ground terminals and prewired connectors with DC specifications have the CE marking.

Features

Standard Models

Many Variations in Standard Limit Switches

A Wide Range of Models
The WL Series provides a complete range of Limit Switches with a long history of meeting user needs. Select environment-resistant specifications, actuators for essentially any workpiece, operating sensitivity matched to the workpiece, operation indicators to aid operation and maintenance, and various wiring specifications.

Environment-resistant Models

Select from Six Types of Environment Resistance
The series includes Airtight Switches, Hermetic Switches, Heatresistant Switches, Low-temperature Switches, Corrosion-proof switches, and Weather-proof Switches. Select the one required by the onsite environment.

Spatter-prevention Models

Excellent Performance on Arc Welding Lines

 or Sites with Spattering Cutting Powder
Ideal for Welding Sites

Stainless steel and resins that resist adhesion of spatters are used to prevent troubles caused by zinc powder generated during welding.

Long-life Models

Mechanical Endurance of 30 Million Operations

Long-life Models for High-frequency Applications

Long life has been achieved by increasing the resistance to friction and creating better sliding properties in the head mechanism. Greater visibility is provided when setting with a fluorescent display for setting the stroke.

O-rings, cover seals, and other measures provide a waterproof, dripproof structure (IP67).

Approved Standards to Aid Export Machines

Various WL/WLM switches are approved by UL, CSA, TÜV, EN/IEC, and CCC making them ideal for export machines.
High-precision Models Available in All Switch Types; Ideal for Position Control
High-precision models achieve a very small movement to operation (approx. 5°) and a repeat accuracy that is twice that of basic models.
Operation Indicators for Easier Daily Inspections (See note.)
Confirm operation with a neon lamp or LED for easier startup confirmations and maintenance.
Note: Specify the type of operation indicator for general-purpose models. Provided on standard models for spatter-prevention and long-life models.
Models with Connectors Provided with All Switch Types
Reduced wiring with one-touch connection. Connectors that also make Switch replacement easier are provided with direct-wired and prewired models).

Product Configuration

Selection by Purpose

Tables of Models

General-purpose, Spatter-prevention, and Long-life Switches

Actuators/Heads

Type	Generalpurpose	Actuators			Features	Head specifications		Spatterprevention	Long-life
	Model	Roller lever	Plunger	Flexible rod	Total travel (TT)	One-side operation	Head mounting	Model	Model
Basic	WL \square	Possible	Possible	Possible	- With a Roller Lever	Possible (See note 1.) (Except for long-life models.)	Any of 4 directions	WLCA2-■S	WLMCA2 \square
Generalpurpose Overtravel	WLH \square	Possible	---	---	- Overtravel is large, making setting the dog easier. - Mounting is compatible with WLH2.	Not possible (See note 2.)	Any of 4 directions	WLH2-■S	WLH2 \square
High-sensitivity Overtravel	WLG \square	Possible	---	---	- Operation is highly sensitive with only 10° pretravel. - Overtravel is large, making setting the dog easier. - Mounting is compatible with WLG2.	Not possible (See note 2.)	Any of 4 directions	WLG2-■S	WLMG2 \square
Overtravel, 90° operation	WL $\square-2$ WL■-2N	Possible Possible	---	---	- Overtravel is large, making setting the dog easier. - Mounting is compatible with WLCA2-2.	Not possible (See note 2.) Possible (See note 1.)	Any of 4 directions Either of 2 directions	---	---
High-precision	WLGCA2	Possible	---	---	- Repeat accuracy is twice that of basic models. - Operation is highly sensitive with only 5° pretravel. - Ideal for positioning, e.g., with machine tools.	Not possible (See note 2.)	Any of 4 directions	WLGCA2-■S	WLMGCA2 \square
Protective	WLCA32- \square	Possible	---	---	- When the dog throws the lever, the output is reversed and the reversed output is held even after the dog passed. The original status is returned to only after the dog passed.	--	Any of 4 directions	--	---

Note 1. One-side operation means that three operational directions can be selected electrically, according to the change in direction of the operating plunger. The operating plunger is set for operation on both sides before delivery.
2. Those models for which one-side operation is impossible can only operate on both sides.

Connectors and Conduits

Wiring type	General-purpose	Connector/conduit specifications	Spatter-prevention	Long-life
	Model		Model	Model
Direct-wired connector	WL \square - \square LDK \square	- SC-2F/-4F Connector built-in	---	WLM \square-LDK \square
Pre-wired connector	WLD- \square LD-M1 \square WL $\square-\square$ LD- \square GJ \square WL $\square-\square L D-D K 1 E J \square$	- XS2H-series Pre-wired Connector built-in	$\begin{aligned} & \text { WL } \square-\square \text { S-M1 } \square J-1 \\ & \text { WL } \square-\square \text { S-DGJS03 } \end{aligned}$	$\begin{aligned} & \text { WLM } \square \text {-LD-M1J } \\ & \text { WLM } \square \text {-LD- } \square \text { GJ } \square \end{aligned}$
Conduit (screw terminal)	$\begin{aligned} & \text { WL } \square-\square \\ & \text { WL } \square-\square \mathrm{G} 1 \square \\ & \text { WL } \square-\square \mathrm{G} \square \\ & \text { WL } \square-\square \mathrm{Y} \square \\ & \text { WL } \square-\square \mathrm{TS} \square \end{aligned}$	- G1/2 with no ground terminal - G1/2 with ground terminal - Pg13.5 with ground terminal - M20 with ground terminal - 1/2 14NPT with ground terminal	---	$\text { WLM } \square \text {-LD }$

Environment-resistant Switches

Type	Item Model	Environment-resistant		
		Application	Environment-resistant construction	Applicable models
Airtight seal	WL \square-55	For uses in locations subject to cutting oil or water	Uses the W-10FB3-55 Airtight Built-in Switch. Note: Use the SC Connector for the conduit opening.	All models except the low-temperature and heat-resistant models Note: Models can be produced using standard actuators.
Hermetic seal (Molded terminals/ Anti-coolant)	WL \square-139		Refer to page 55 for information on the envi-ronment-resistant construction of Switches with Hermetic Seals.	All models except the low-temperature and heat-resistant models
	WL \square-140			
	WL \square-141			
	WLD-145			Note: Models can be produced using standard actuators.
	WL \square-RP40			Only the WLCA2,
	WL \square-RP60			WLGCA2, or WLH2 can be produced for the WL \square-141 and WL \square-145.
Low-temperature (See note.)	WLD-TC	Can be used at a temperature of $-40^{\circ} \mathrm{C}$ (operating temperature range: -40 to $40^{\circ} \mathrm{C}$), but cannot withstand icing.	Uses a general-purpose built-in switch. Silicone rubber is used for rubber parts such as the O-ring, gasket, etc.	All models except airtight seal, hermetic seal, heat-resistant, corrosion-proof, and indicatorequipped models
Heat-resistant (See note.)	WL \square-TH	Can be used in temperatures of $120^{\circ} \mathrm{C}$ (operating temperature range: 5 to $120^{\circ} \mathrm{C}$).	Uses a special built-in switch made from heat-resistant resin. Silicone rubber is used for rubber parts such as the O-ring, gasket etc.	All models except airtight seal, hermetic seal, heat-resistant, corrosion-proof, and indicatorequipped, nylon roller (WLCA226N), seal roller models, and resin rod (WLNJ-2) models
Corrosion-proof	WL \square-RP	For use in locations subject to corrosive gases and chemicals.	Diecast parts, such as the switch box, are made of corrosion-proof aluminum. Rubber sealing parts are made of fluorine rubber which aids in resisting oil, chemicals and adverse weather conditions. Exposed nuts and screws (except the actuator section) are made of stainless steel. Moving and rotary parts such as rollers are made of sintered stainless steel or stainless steel.	All models except overtravel (90° operation), fork lever lock (WLCA32-41 to -43), low-temperature, heat-resistant, and in-dicator-equipped models
Weather-proof	WL \square-P1	For use in parking lots and other outdoor locations.	Rubber parts are made from silicone rubber, which has a high-tolerance to deterioration over time and changes in temperature. Rollers are made of stainless steel to improve corrosion resistance. Exposed nuts and screws are made of stainless steel.	Only general-purpose overtravel (WLH2/12) and high-sensitivity overtravel (WLG2/12) models (excluding heat-resistant models).

Note: Weather Resistance, Cold Resistance, and Heat Resistance
Silicon rubber is used to increase resistance to weather, cold, and heat. Silicon rubber, however, can generate silicon gas. (This can occur at room temperature, but the amount of silicon gas generated increases at higher temperatures.) Silicon gas will react as a result of arc energy and form silicon oxide $\left(\mathrm{SiO}_{2}\right)$. If silicon oxide accumulates on the contacts, contact interference can occur and can interfere with the device. Before using a Switch, test it under actual application conditions (including the environment and operating frequency) to confirm that no problems will occur in actual.

Selection Guide

With the WL Series, OMRON will combine the switch, Actuator, and wiring method required to build the ideal switch for your application.
The WL Series consists of four basic types: General-purpose, Envi-ronment-resistant, Spatter-prevention, and Long-life Switches.
WLCA2 Switches can be used for the most common applications.
According to Operating Environment

	Environment	Key specifications		Models
	Normal	Water-resistant to IP67.	WL \square WLM	General-purpose Switches Long-life Switches
	High-temperature	$5^{\circ} \mathrm{C}$ \square To increase heat resistance, the rubber material (silicon rubber) and the material of the built-in switch have been changed.	WL \square-TH	Heat-resistant Switches (See note.)
	Low-temperature	To increase resistance to cold, silicon rubber and other measures are used.	WL \square-TC	Low-temperature Switches (See note.)
	Outdoors	Rubber parts are made from silicone rubber, which has a high-tolerance to deterioration over time and changes in temperature. Rollers are made of stainless steel to improve corrosion resistance. Exposed nuts and screws are made of stainless steel.	WL \square-P1	Weather-proof Switches (See note.)
	Chemicals and oil	Corrosion-proof aluminum diecast has been used for the housing, fluorine rubber has been used for rubber parts, and stainless steel has been used for screws and nuts (except for actuator) to increase resistance to oils, chemicals, and weather.	WL \square-RP	Corrosion-proof Switches (See note.)
	Water drops and mist	Uses an airtight built-in switch.	WL $\square-55$	Airtight Switches (See note.)
	Constant water drops and mist	Cables attached. Uses a general-purpose built-in switch. The case cover and conduit opening are molded from epoxy resin to increase the seal. The cover cannot be removed.	WL \square-139 Hermetic, Molded-terminal Switches (See note.)	
		Cables attached. Uses an airtight built-in switch. The case cover and box interior are molded from epoxy resin to increase the seal. The cover cannot be removed. The SC connector can be removed, so it is possible to use flexible conduits for the cable.	WL \square-RP40 Hermetic, Molded-terminal Switches (See note.)	
		Cables attached. Uses an airtight built-in switch. The cover screws, case cover, box interior, and conduit opening are molded from epoxy resin to increase the seal. (The cover cannot be removed.)	WL \square-140 Hermetic, Molded-terminal Switches (See note.)	
	Constant water drops or splattering cutting powder	Cables attached. Uses an airtight built-in switch. The cover screws, case cover, box interior, conduit opening, box head, and head screws are molded from epoxy resin to increase the seal. (The cover cannot be removed.) The Head opening is protected from cutting powder. -141: The Head section is molded from epoxy resin; Head direction cannot be changed. -145: The Head section is molded from epoxy resin; Head can be in any of 4 directions.	WL \square-141, - 145 Hermetic, Molded-terminal Switches (See note.) (Only the WLCA2, WLG2, WLGCA2, and WLH2 can be produced.)	
	Coolant	Cables attached. Uses an airtight built-in switch. The case cover, box interior, conduit opening, and head screws are molded from epoxy resin to increase the seal. (The cover cannot be removed.) Rubber parts are made from fluorine rubber to increase resistance to coolant.	WL \square-RP60 Hermetic, Anti-coolant Switches (See note.)	
	Spattering from welding	To prevent spatter during welding, a heat-resistant resin is used for the indicator cover and screws and rollers are all made from stainless steel.	WL \square-S	Spatter-prevention Switches

Note: Not all functions can be combined with environment-resistant switches. Refer to the applicable models on the previous page.

According to Application Conditions

Conditions	Key specifications		Models
Switching standard loads	10 A at 125,250 , or 500 VAC 0.8 A at 125 VDC 0.4 A at 250 VDC	$\begin{aligned} & \text { WL } \square \\ & \text { WL } \square \text {-S } \end{aligned}$ WLM	General-purpose Switches Spatter-prevention Switches Long-life Switches
Switching microloads	0.1 A at 125 VAC , resistive load 0.1 A at 30 VDC , resistive load	WL01 WL01■-S	General-purpose Microload Switches Spatter-prevention Microload Switches
Normal durability	Mechanical: 15 million operation min. (10 million operation min. for overtravel generalpurpose or high-sensitivity models or flexible rod models)	$\begin{aligned} & \text { WL } \square \\ & \text { WL } \square \text {-S } \end{aligned}$	General-purpose Switches Spatter-prevention Switches
Long-life	Mechanical: 30 million operation min.	WLM \square	Long-life Switches

According to Ease of Installation and Maintenance

	Conditions	Key specifications	Models
	Daily inspections and maintenance checks	Switching light-ON between operating/not operating. (Switching not possible for models with molded terminals.) Neon lamp 125 VAC, 250 VAC	WL \square-LE General-purpose, Indicator-equipped (Neon Lamp) Switches WL \square-LES Spatter-prevention, Indicator-equipped (Neon Lamp) Switches
		Switching light-ON between operating/not operating. (Switching not possible for models with molded terminals.) LED 10 to 115 VAC/DC	WL \square-LD General-purpose, Indicator-equipped (LED) Switches WL \square-LDS Spatter-prevention, Indicator-equipped (LED) Switches
	Screw tightening and installation	Screw terminals. No ground terminal. Conduit size: G1/2	WL $\square \quad$ General-purpose Switches WLM \square Long-life Switches
		Screw terminals. Ground terminal. Conduit size: 4 sizes	WL \square General-purpose Switches
	One-touch connector attachment	Direct-wired connector, 2-core. Greatly reduces wiring work. Waterproof to IP67.	WL $\square-\square L D K 13$ General-purpose, Direct-wired Connector Switches WLM \square-LDK13 Long-life, Direct-wired Connector Switches
		Direct-wired connector, 4-core. Greatly reduces wiring work. Waterproof to IP67.	WL \square - \square LDK43 General-purpose, Direct-wired Connector Switches WLM \square-LDK43 Long-life, Direct-wired Connector Switches
	Connector attachment in control and relay boxes	Pre-wired connector, 2-core. Greatly reduces wiring work. Waterproof to IP67.	WL■-■LD-M1J General-purpose, Pre-wired Connector Switches WL■-■S-M1J-1 Spatter-prevention, Pre-wired Connector Switches WLM■-LD-M1J Long-life, Pre-wired Connector Switches
		Pre-wired connector, 4-core. Greatly reduces wiring work. Waterproof to IP67.	WL $\square-\square L D-\square G J O 3$ General-purpose, Pre-wired Connector Switches WL $\square-\square S-\square G J S O 3$ Spatter-prevention, Pre-wired Connector Switches WLM \square-LD- \square GJO3 Long-life, Pre-wired Connector Switches

	Detection obiect	Key specifications		Modes
	Seneal		MCAR WCOAR WMOAR	General－purpose Switches Spatter－prevention Switches
	Passing dogs			General－purpose Switches Spatter－prevention Switches
				General－purpose Switches Spatter－prevention Switches Long－life Switches
	Passing cogs			Genealpurose Mwiches
	High peasion			$\begin{aligned} & \text { General-purpose Switches } \\ & \text { Spatter-prevention Switches } \\ & \text { Long-life Switches } \end{aligned}$
$\begin{aligned} & \text { Dogs and } \\ & \text { workpieces } \\ & \text { (Mounts in any of } \\ & 4 \text { directions) } \end{aligned}$				$\begin{aligned} & \text { Roller Lever Actuators } \\ & \text { Roller Lever Actuators } \\ & \text { Roller Lever Actuators } \\ & \hline \end{aligned}$
			wโ2． 7	Poller Lever A
		\％：Lon leer	Wน2．8	Roleretever
	Adivesab beamen		wLロ12	Ajusatale Rololer Lever
	$\begin{aligned} & \text { Dogs or workpieces } \\ & \text { with large } \\ & \text { deflection } \end{aligned}$	25	พน几	Adiusalue Fod L
			WLH	Adjusale Rod Leve
			WHALL5	Fod Sping Lever Actuar
Round－trip passing ooss			wLCA32．41	Fork Lever Look Actuator
			WCAA3242	Fork Lever Look Aa
			S243	Fonk
			A32．44	Fork Lever Look Acularar
		緺	mLD	Top Punger Actuator
			w．so	Horionala Pungera Actuar
		骨	wL03	Top－bal Pungerat Acua
		वfich	w．so3	Horionatabal Pungera Actuator
			$\mathrm{M}_{\mathrm{W} \text { W．022 }}$	
		${ }^{\text {effil }}$	w．so2	Horionatalolorer Pungeratataior

Model Number Structure

Model Number Legend

General-purpose and Environment-resistant Switches

WL $\square \square-\square \square \square \square \square \square \square \square$

12345678910

1. Electrical Rating

Blank	Standard
$\mathbf{0 1}$	Microload

Note: Dimensions are the same as the standard models.
3. Environment-resistant Model Specifications

Blank	Standard
RP	Corrosion-proof (See note 2.)
P1	Weather-proof (See note 2.)

Note 1: Dimensions are the same as the standard environ-ment-resistance models.
2. Refer to page 37 for applicable models.

4. Built-in Switch Type

Blank	Standard
55	Hermetically sealed

Note: Dimensions are the same as the standard built-in switch models.
5. Temperature Specifications

Blank	Standard: $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
TH	Heat-resistant: $5^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ (See note 2.)
TC	Low-temperature: $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (See note 2.)

Note 1: Dimensions are the same as the standard models.
2. Refer to page 37 for applicable models.
7. Conduit Size, Ground Terminal Specifications (See note 1.)

Blank	$\mathrm{G}^{1} / 2$ without ground terminal
G1	$\mathrm{G}^{1} / 2$ with ground terminal
G	Pg 13.5 with ground terminal
Y	M 20 with ground terminal
TS	$1 / 2-14$ NPT with ground terminal

Note 1: Models with ground terminals are approved by EN/ IEC (CE marking).
2. Dimensions are the same as the standard models.

6. Hermetic Model Specifications

Blank	No cables or molding
$\mathbf{1 3 9}$	General-purpose built-in switch with cables attached and molded con- duit opening and cover (cover cannot be removed). (See note.)
$\mathbf{1 4 0}$	Airtight built-in switch with cables attached and molded conduit open- ing, cover, and box interior cover screws (cover cannot be removed). (See note.)
$\mathbf{1 4 1}$	Airtight built-in switch with cables attached and molded conduit open- ing, cover, head, box interior, cover screws, and head screws (cover cannot be removed, Head direction cannot be changed). The Head opening is created to protect it from cutting powder. (See note.)
$\mathbf{1 4 5}$	Airtight built-in switch with cables attached and molded conduit open- ing, cover, , box interior, and cover screws (cover cannot be removed, Head can be mounted in any of 4 directions). The Head opening is cre- ated to protect it from cutting powder. (See note.)
RP40	Airtight built-in switch with cables attached and molded cover and box interior (cover cannot be removed, Head direction can be changed). SC Connector can be removed, so it is possible to use flexible conduits for the cable. (See note.)
RP60	Airtight built-in switch with cables attached, fluorine rubber used, and molded conduit opening, cover, and box interior (cover cannot be re- moved, Head direction cannot be changed). (See note.)

8. Indicator Type

Symbol	Element	Voltage	Leakage current	
Blank	No indicator			
LE	Neon lamp	125 to 250 VAC	Approx. 0.6 to 1.9 mA	
LD	LED	10 to 115 VAC/DC	Approx. 0.5 mA	

Note: Dimensions are the same for both LE and LD models.

9. Indicator Wiring

2	NC connection: Light-ON when operating
3	NO connection: Light-ON when not operating

Note: Include the indicator wiring specification only when a (6) hermetic seal and (8) operation indicator have been selected.

10. Lever Type

Blank	Standard lever
A	Double nut lever

Note: Refer to page 37 for applicable models.

General-purpose Sensor I/O Connector Switches

Direct-wired Connector

4. Indicator Type

LD	LED, AC/DC (10 to 115 V)

5. Wiring Specifications

K13A	Direct-wired Connector (2-core: AC, NO wiring, connector pins No. 3, 4)
K13	Direct-wired Connector (2-core: DC, NO wiring, connector pins No. 3, 4)
K43A	Direct-wired Connector (4-core: AC)
K43	Direct-wired Connector (4-core: DC)
-M1J	
(See note 1.)	Pre-wired Connector (See note 2.) (2-core: DC, NO wiring, connector pins No. 3, 4)
-M1GJ	
(See note 1.)	Pre-wired Connector (See note 2.) (2-core: DC, NO wiring, connector pins No. 1, 4)
-M1JB	Pre-wired Connector (See note 2.) (2-core: DC, NC wiring, connector pins No. 3, 2)
-AGJ03	Pre-wired Connector (See note 2.) (4-core, AC)
-DGJ03	Pre-wired Connector (See note 2.) (4-core, DC)
(See note 1.)	Pre-wired Connector (See note 2.) (3-core: DC, NO wiring, connector pins No. 2, 3, 4)
-DK1EJ03	
(See note 1.)	

Note 1: Models with pre-wired connectors and DC specifications have EN/IEC approval (CE marking).
2. With $0.3-\mathrm{m}$ cable attached.

1. Electrical Rating

Blank	Standard
01	Microload

Note: Dimensions are the same as the standard models.
2. Actuator Type

CA2	Roller lever: Standard model
GCA2	Roller lever: High-precision model
H2	Roller lever: General-purpose overtravel model
G2	Roller-lever: High-sensitivity overtravel
D2	Top-roller plunger
D28	Sealed top-roller plunger

3. Built-in Switch Type

Blank	Standard
$\mathbf{5 5}$	Hermetically sealed

Note: Dimensions are the same as the standard models.

Spatter-prevention Switches
 WL $\square \square-\square \square \mathbf{S} \square$
 $\begin{array}{llll}12 & 3 & 5\end{array}$

1. Electrical Rating

Blank	Standard
$\mathbf{0 1}$	Microload

Note: Dimensions are the same as the standard models.
2. Actuator Type

CA2	Roller lever: Standard model
GCA2	Roller lever: High-precision model
H2	Roller lever: General-purpose Overtravel model
G2	Roller lever: High-sensitivity Overtravel model
D28	Sealed top-roller plunger

3. Built-in Switch Type

Blank	Standard
$\mathbf{5 5}$	Hermetically sealed

Note: Dimensions are the same as the standard built-in switch models.

4. Indicator Type

LD	LED, AC/DC
LE	Neon lamp

Note: Dimensions are the same for both LE and LD models.

5. Wiring Specifications

- M1J-1	
(See note 1.)	Pre-wired Connector (See note 2.) (2-core: DC, NO wiring, connector pins No. 3, 4)
-M1GJ-1	Pre-wired Connector (See note 2.) (See note 1.) (2-core: DC, NO wiring, connector pins No. 1, 4)
-DGJS03	Pre-wired Connector (See note 2.) (4ee note 1.) (4-core: DC)

Note 1: Models with pre-wired connectors and DC specifications are approved
by EN/IEC (CE marking) except for LE Models (Neon Lamp Models).
2. With $0.3-\mathrm{m}$ cable attached.

Long-life Switches
 WLM \square-LD \square
 123

1. Actuator

CA2	Roller lever: Standard model
GCA2	Roller lever: High-precision model
H2	Roller lever: General-purpose overtravel model
G2	Roller lever: High-sensitivity overtravel model

2. indicator Type

$$
\begin{array}{|l|l|}
\hline \text { LD } & \text { LED, AC/DC (} 10 \text { to } 115 \mathrm{~V} \text {) } \\
\hline
\end{array}
$$

3. Wiring Specifications

Blank	Screw terminal: G1/2 conduit
K13A	Direct-wired Connector: 2-core, AC
K13	Direct-wired Connector: 2-core, DC
K43A	Direct-wired Connector: 4-core, AC
K43	Direct-wired Connector: 4-core, DC
-M1J	Pre-wired Connector: 2-core, DC (See note.)
-AGJ03	Pre-wired Connector: 4-core, AC (See note.)
-DGJ03	Pre-wired Connector: 4-core, DC (See note.)

Note: With $0.3-\mathrm{m}$ cable attached.

Ordering Information

List of Models

General－purpose Switches

Standard Switches

Note：Models are also available with ground terminals．

Item ${ }^{*}$ Lever type			Roller lever R38	Roller lever R50	Roller lever R63	冎
			Model	Model	Model	
Basic		Standard load	WLCA2	WLCA2－7	WLCA2－8	
		Microload	WL01CA2	WL01CA2－7	WL01CA2－8	
Overtravel	General－ purpose	Standard load	WLH2	－－－	－－－	
		Microload	WL01H2	－－－	－－－	
	High－sensi－ tivity	Standard load	WLG2	－－－	－－－	
		Microload	WL01G2	－－－	－－－	
	90° operation	Standard load	WLCA2－2	－－－	－－－	
		Microload	WL01CA2－2	－－	－－－	
		Standard load	WLCA2－2N	－－－	－－－	
		Microload	WL01CA2－2N	－－－	－－－	
High－precision		Standard load	WLGCA2	－－－	－－－	
		Microload	WL01GCA2	－－－	－－－	

Item Lever type		Fork lever lock （with WL－5A100 Plastic Roller Lever）	-9	Fork lever lock （with WL－5A102 Plastic Roller Lever）	©	Fork lever lock（with WL－5A104 Plastic Roller Lever）	(O) ®
		Model		Model		Model	
Protective	Standard load	WLCA32－41		WLCA32－42		WLCA32－43	
	Microload	WL01CA32－41		WL01CA32－42		WL01CA32－43	

	Lever type	Top plunger	Top－roller plunger	Sealed top－roller plunger	为	Top－ball plunger	煮
Item		Model	Model	Model		Model	
Basic	Standard load	WLD	WLD2	WLD28		WLD3	
	Microload	WL01D	WL01D2	WL01D28		WL01D3	

	Lever type	Horizontal plunger	Horizontal－roller plunger	Horizontal－ball plunger	${ }^{\text {atil }}$
Item		Model	Model	Model	
Basic	Standard load	WLSD	WLSD2	WLSD3	
	Microload	WL01SD	WL01SD2	WL01SD3	

		Coil spring（spring diameter：6．5）	Coil spring（spring diameter：4．8）	Coil spring（spring diameter：8）	Steel wire（wire diameter：1）	号
		Model	Model	Model	Model	
Basic	Standard load	WLNJ	WLNJ－30	WLNJ－2	WLNJ－S2	
	Microload	WL01NJ	WL01NJ－30	WL01NJ－2	WL01NJ－S2	

General－purpose Switches

Indicator－equipped Switches

Item ${ }^{\text {Lever type }}$			Roller lever R38	Roller lever R50	Roller lever R63	Adjustable roller lever	閶
			Model	Model	Model	Model	
Basic		Neon lamp	WLCA2－LE	WLCA2－7LE	WLCA2－8LE	WLCA12－LE	
		LED	WLCA2－LD	WLCA2－7LD	WLCA2－8LD	WLCA12－LD	
Overtravel	General－purpose	Neon lamp	WLH2－LE	－－	－－－	WLH12－LE	
		LED	WLH2－LD	－－	－－	WLH12－LD	
	High－sensitivity	Neon lamp	WLG2－LE	－－	－－	WLG12－LE	
		LED	WLG2－LD	－－	－－	WLG12－LD	
	90° operation	Neon lamp	WLCA2－2LE	－－	－－	WLCA12－2LE	
		LED	WLCA2－2LD	－－	－－－	WLCA12－2LD	
		Neon lamp	WLCA2－2NLE	－－	－－－	WLCA12－2NLE	
		LED	WLCA2－2NLD	－－	－－	WLCA12－2NLD	
High－precision		Neon lamp	WLGCA2－LE	－－	－－	－－－	
		LED	WLGCA2－LD	－－	－－	－－	

Item Lever type			Adjustable rod lever 25 to 140 mm	Adjustable rod lever 350 to 380 mm	Rod spring lever	㚗
			Model	Model	Model	
Basic		Neon lamp	WLCL－LE	－－	－－－	
		LED	WLCL－LD	－－－	－－－	
Overtravel	General－purpose	Neon lamp	WLHL－LE	WLHAL4－LE	WLHAL5－LE	
		LED	WLHL－LD	WLHAL4－LD	WLHAL5－LD	
	High－sensitivity	Neon lamp	WLGL－LE	－－－	－－－	
		LED	WLGL－LD	－－－	－－－	
	90° operation	Neon lamp	WLCL－2LE	－－－	－－－	
		LED	WLCL－2LD	－－	－－	
		Neon lamp	WLCL－2NLE	－－－	－－－	
		LED	WLCL－2NLD	－－－	－－－	

Item Lever type 		Fork lever lock（with WL－5A100 Plastic Roller Lever）	(®)	Fork lever lock（with WL－5A102 Plastic Roller Lever）	©	Fork lever lock（with WL－5A104 Plastic Roller Lever）	(2)
		Model		Model		Model	
Protective	Neon lamp	WLCA32－41LE		WLCA32－42LE		WLCA32－43LE	
	LED	WLCA32－41LD		WLCA32－42LD		WLCA32－43LD	

Item \quad Lever type		Top plunger	Top－roller plunger	Sealed top－roller plunger	㦹	Top－ball plunger	騧
		Model	Model	Model		Model	
Basic	Neon lamp	WLD－LE	WLD2－LE	WLD28－LE		WLD3－LE	
	LED	WLD－LD	WLD2－LD	WLD28－LD		WLD3－LD	

Item 		Horizontal plunger	Horizontal－roller plunger	Horizontal－ball Plunger	Coil spring（spring diameter：6．5）	
		Model	Model	Model	Model	
Basic	Neon lamp	WLSD－LE	WLSD2－LE	WLSD3－LE	WLNJ－LE	
	LED	WLSD－LD	WLSD2－LD	WLSD3－LD	WLNJ－LD	

Item \quad Lever type		Coil spring（spring diameter：4．8）	Coil spring（spring diameter：8）	Steel wire（wire diameter：1）	\％
		Model	Model	Model	
Basic	Neon lamp	WLNJ－30LE	WLNJ－2LE	WLNJ－S2LE	
	LED	WLNJ－30LD	WLNJ－2LD	WLNJ－S2LD	

Covers with Operation Indicators

General-purpose Switches

Sensor I/O Connector Switches

- Direct-wired Connectors

Lever type	Item			Basic	Overtravel		High-precision	
				General-purpose	High-sensitivity			
	Wiring		Built-in switch specification		Model	Model	Model	Model
Roller lever	2-core	DC	Standard	WLCA2-LDK13	WLH2-LDK13	WLG2-LDK13	WLGCA2-LDK13	
			Airtight seal	WLCA2-55LDK13	WLH2-55LDK13	WLG2-55LDK13	WLGCA2-55LDK13	
	4-core	DC	Standard	WLCA2-LDK43	WLH2-LDK43	WLG2-LDK43	WLGCA2-LDK43	
			Airtight seal	WLCA2-55LDK43	WLH2-55LDK43	WLG2-55LDK43	WLGCA2-55LDK43	
Top-roller plunger	2-core	DC	Standard	WLD2-LDK13	---	---	---	
			Airtight seal	WLD2-55LDK13	---	---	---	
靣	4-core	DC	Standard	WLD2-LDK43	---	---	---	
			Airtight seal	WLD2-55LDK43	--	---	---	

- Pre-wired Connectors

Lever type	Item						Overtravel		High-precision	
						General-purpose	High-sensitivity			
	Wiring				Built-in switch specification		Model	Model	Model	Model
Roller lever	2-core	DC	NO	No. 3, 4	Standard	WLCA2-LD-M1J	WLH2-LD-M1J	WLG2-LD-M1J	WLGCA2-LD-M1J	
					Airtight seal	WLCA2-55LD-M1J	---	---	WLGCA2-55LD-M1J	
				No. 1, 4	Standard	WLCA2-LD-M1GJ	WLH2-LD-M1GJ	WLG2-LD-M1GJ	WLGCA2-LD-M1GJ	
					Airtight seal	WLCA2-55LD-M1GJ	---	WLG2-55LD-M1GJ	---	
			NC	No. 3, 2	Standard	---	---	WLG2-LD-M1JB	---	
					Airtight seal	WLCA2-55LD-M1JB	---	WLG2-55LD-M1JB	WLGCA2-55LD-M1JB	
	4-core	DC	---	---	Standard	WLCA2-LD-DGJ03	WLH2-LD-DGJ03	WLG2-LD-DGJ03	--	
					Airtight seal	WLCA2-55LD-DGJ03	WLH2-55LD-DGJ03	WLG2-55LD-DGJ03	$\begin{aligned} & \hline \text { WLGCA2-55LD- } \\ & \text { DGJ03 } \\ & \hline \end{aligned}$	
	3-core	DC	---	$\begin{array}{\|c} \text { No. 2, } \\ 3.4 \end{array}$	Standard	WLCA2-LD-DK1EJ03	WLH2-LD-DK1EJ03	WLG2-LD-DK1EJ03	---	
					Airtight seal	WLCA2-55LDDK1EJ03	WLH2-55LD-DK1EJ03	WLG2-55LD-DK1EJ03	--	
Top-roller plunger	2-core	DC	NO	No. 3, 4	Standard	WLD2-LD-M1J	---	--	---	
					Airtight seal	WLD2-55LD-M1J	---	---	--	
				No. 1, 4	Standard	WLD2-LD-M1GJ	---	---	---	
					Airtight seal	WLD2-55LD-M1GJ	---	---	---	
			NC	No. 3, 2	Standard	---	---	---	---	
					Airtight seal	WLD2-55LD-M1JB	---	---	---	
	4-core	DC	---	---	Standard	WLD2-LD-DGJ03	---	---	---	
					Airtight seal	---	---	---	--	
	3-core	DC	\|--	$\begin{aligned} & \text { No. 2, } \\ & 3,4 \end{aligned}$	Standard	WLD2-LD-DK1EJ03	---	--	--	
					Airtight seal	WLD2-55LD-DK1EJ03	--	--	---	

Environment-resistant Switches
Note: Models are also available with ground terminals.

				Lever		Roller lever R38	
					Basic		ravel
						General-purpose	High-sensitivity
Item					Model	Model	Model
Airtight seal			No indica		WLCA2-55	WLH2-55	WLG2-55
			Indicator	LED	WLCA2-55LD	WLH2-55LD	WLG2-55LD
				Neon	WLCA2-55LE	WLH2-55LE	WLG2-55LE
Hermetic seal	Molded terminals	-139	No indica		WLCA2-139	WLH2-139	WLG2-139
			Indicator	NC wiring	WLCA2-139LD2	---	---
				NO wiring	WLCA2-139LD3	---	WLG2-139LD3
		-140	No indica		WLCA2-140	WLH2-140	WLG2-140
			Indicator	NC wiring	WLCA2-140LD2	---	WLG2-140LD2
				NO wiring	WLCA2-140LD3	---	WLG2-140LD3
		-141	No indica		WLCA2-141	WLH2-141	WLG2-141
			Indicator	NC wiring	WLCA2-141LD2	---	WLG2-141LD2
				NO wiring	WLCA2-141LD3	WLH2-141LD3	WLG2-141LD3
	Anti-coolant		No indica		WLCA2-RP60	WLH2-RP60	WLG2-RP60
			Indicator	NC wiring	WLCA2-RP60LD2	---	WLG2-RP60LD2
				NO wiring	WLCA2-RP60LD3	WLH2-RP60LD3	WLG2-RP60LD3
Heat-resistant			No indicator		WLCA2-TH	WLH2-TH	WLG2-TH
Low-temperature			No indicator		WLCA2-TC	WLH2-TC	WLG2-TC
Corrosion-proof			No indicator		WLCA2-RP	WLH2-RP	WLG2-RP
Weather-proof			No indicator		---	WLH2-P1	WLG2-P1

Spatter-prevention Switches

			Roller lever		Sealed top-roller plunger	
			Double nut lever	Allen-head lever		
			Model	Model	Model	
Neon lamp operation indicator	Basic		WLCA2-LEAS	WLCA2-LES	WLD28-LES	
	Overtravel	General-purpose	WLH2-LEAS	WLH2-LES	---	
		High-sensitivity	WLG2-LEAS	WLG2-LES	---	
	High-precision		---	WLGCA2-LES	---	
LED operation indicator	Basic		WLCA2-LDAS	WLCA2-LDS	WLD28-LDS	
	Overtravel	General-purpose	WLH2-LDAS	WLH2-LDS	---	
		High-sensitivity	WLG2-LDAS	WLG2-LDS	---	
	High-precision		---	WLGCA2-LDS	--	

Note: Ask your OMRON representative about WL01 $\square-\square$ S Microload Switches.
Long-life Switches

Lever type		Item		LED operation indicator (See note 1.)				
		Basic	Overtravel		High-precision			
		General-purpose	High-sensitivity					
		Model	Model	Model	Model			
咠	Roller lever, screw termina				WLMCA2-LD	WLMH2-LD	WLMG2-LD	WLMGCA2-LD
	Roller lever, direct-wired connector	2-core	AC	WLMCA2-LDK13A	WLMH2-LDK13A	WLMG2-LDK13A	WLMGCA2-LDK13A	
			DC	WLMCA2-LDK13	WLMH2-LDK13	WLMG2-LDK13	WLMGCA2-LDK13	
		4-core	AC	WLMCA2-LDK43A	WLMH2-LDK43A	WLMG2-LDK43A	WLMGCA2-LDK43A	
			DC	WLMCA2-LDK43	WLMH2-LDK43	WLMG2-LDK43	WLMGCA2-LDK43	
Roller lever, pre-wired connector (See note 2.)		2-core	DC	WLMCA2-LD-M1J	WLMH2-LD-M1J	WLMG2-LD-M1J	WLMGCA2-LD-M1J	
		4-core	AC	WLMCA2-LD-AGJ03	WLMH2-LD-AGJ03	WLMG2-LD-AGJ03	WLMGCA2-LD-AGJ03	
		DC	WLMCA2-LD-DGJ03	WLMH2-LD-DGJ03	WLMG2-LD-DGJ03	WLMGCA2-LD-DGJ03		

Note 1. The default setting is "light-ON when not operating." Turn the lamp holder by 180° to change the setting to "light-ON when operating". (Ask your OMRON representative about 2 -core models.)
2. With $0.3-\mathrm{m}$ cable attached.

Individual Parts

Heads

Actuator type	Set model	Head model (with Actuator)
Roller lever	WLCA2	WL-1H1100
	WLG2	WL-2H1100
	WLH2	WL-2H1100-1 (See note.)
	WLCA2-2	WL-3H1100
	WLCA2-2N	WL-6H1100
Adjustable roller lever	WLCA12	WL-1H2100
	WLG12	WL-2H2100
	WLH12	WL-2H2100-1 (See note.)
	WLCA12-2	WL-3H2100
	WLCA12-2N	WL-6H2100
Adjustable rod lever	WLCL	WL-4H4100
	WLGL	WL-2H4100
	WLCL-2	WL-3H4100
	WLCL-2N	WL-6H4100

Actuator type	Set model	Head model (with Actuator)
Top plunger	WLD	WL-7H100
	WLD2	WL-7H200
	WLD3	WL-7H300
	WLD28	WL-7H400
Horizontal plunger	WLSD	WL-8H100
	WLSD2	WL-8H200
	WLSD3	WL-8H300
Fork lever lock	WLCA32-41	WL-5H5100
	WLCA32-42	WL-5H5102
	WLCA32-43	WL-5H5104
	WLCA32-44	WL-5H5104
Coil spring	WLNJ	WL-9H100
	WLNJ-30	WL-9H200
	WLNJ-2	WL-9H300
	WLNJ-S2	WL-9H400

Note: The model number of Heads without levers are same as those of Heads with levers without the numbers at the end. Example: WL-1 H1100 becomes WL-1H without the lever.
However, the WLH2 and WLH12 become WL-2H-1 and the WLGCA2 becomes WL-1H-1 for the Heads without levers.
Other Heads are also available. Ask your OMRON representative.

Switches without Levers

Switches without levers		
Actuator type		Switch model
Switches for roller levers	Basic R38	WLRCA2
	High-precision R38	WLRGCA2
	High-sensitivity overtravel, 80°	WLRG2
	General-purpose overtravel, 80°	WLRH2
	Overtravel, 90° operation	WLRCA2-2
	Overtravel, 90° operation	WLRCA2-2N
Switches for adjustable roller levers	Basic	WLRCA2
	High-sensitivity overtravel, 80°	WLRG2
	General-purpose overtravel, 80°	WLRH2
	Overtravel, 90° operation	WLRCA2-2
	Overtravel, 90° operation	WLRCA2-2N
Switches for adjustable rod lever	Basic, 25 to 140 mm	WLRCL
	High-sensitivity overtravel, $80^{\circ}, 25$ to 140 mm	WLRG2
	Overtravel, 90° operation, 25 to 140 mm	WLRCA2-2
	Overtravel, 90° operation, 25 to 140 mm	WLRCA2-2N
Switches for top plungers	---	--
Switches for horizontal plungers	--	--
Switches for fork lever locks	Protective, WL-5A100 Protective, WL-5A102 Protective, WL-5A104	WLRCA32
Switches for coil springs	--	---

Spatter-prevention Products

- Levers and Covers with Indicators

CompleteHeads with allen-head levers	Double Nut Lever	Allen-head Lever	Cover with Indicator
WL-1H1100S (for WLCA2- \square or WLGCA2- \square	WL-1A105S Roller Lever (forward and backward lever)	EWL-1A103S Roller lever (forward and backward lever)	Neon lamp WL-LES
WL-2H1100S (for WLH2- \square or WLG2- \square)			$\begin{array}{\|l\|} \hline \text { LED (LED) } \\ \text { WL-LDS } \\ \hline \end{array}$

Switches without Levers

Switches without levers
WLRCA2-LDS
WLRH2-LES
WLRH2-LDS
WLRG2-LES
WLRG2-LDS
WLRGCA2-LES

Specifications, Ratings, and Characteristics

General-purpose Switches

Approved Standards

Agency	Standard	File No.	Approved models	Contact your OMRON representative for more information on approved models.
UL	UL508	E76675	All modes with direct-wired connectors or prewired connectors except for hermetically sealed models	
CSA	CSA C22.2 No. 14	LR45746		
TÜV	EN60947-5-1	J50022353	Only models with ground terminals	
		J9950023	Models with direct-wired connectors and no ground terminal	
		J9950959	Only models with pre-wired connectors and DC specifications	
CCC (CQC)	GB14048.5	2003010305032365	Contact your OMRON representative for information on approved models.	

$■$ Approved Standard Ratings

UL/CSA

Standard-load Switches: A600, NEMA

Rated voltage	Carry current	Current (A)		Volt-amperes (VA)	
		Make	Break	Make	Break
120 VAC	10 A	60	6	7,200	720
240 VAC		30	3		
480 VAC		15	1.5		
600 VAC		12	1.2		

Switches without Indicators
LE Switches (Neon lamp): A300

Rated voltage	Carry current	Current (A)		Volt-amperes (VA)	
		Make	Break	Make	Break
120 VAC	10 A	60	6	7,200	720
240 VAC		30	3		

LD Switches (LED)

Rated voltage	Carry current
115 VAC	10 A
115 VDC	0.8 A

Microload Switches

0.1 A at $125 \mathrm{VAC}, 0.1 \mathrm{~A}$ at 30 VDC

TÜV (EN60947-5-1) (Only models with ground terminals are approved.), CCC (GB14048.5)

Model	Application category and ratings	Thermal current ($\mathrm{I}_{\text {the }}$)	Indicator
WL \square	$\begin{aligned} & \text { AC-15: } 2 \mathrm{~A} / 250 \mathrm{~V} \\ & \mathrm{DC}-12: 2 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$	10 A	---
WL01 \square	$\begin{aligned} & \text { AC-14: } 0.1 \mathrm{~A} / 125 \mathrm{~V} \\ & \mathrm{DC}-12: 0.1 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$	0.5 A	---
WLD-LE	AC-15: $2 \mathrm{~A} / 250 \mathrm{~V}$	10 A	Neon lamp
WL01■-LE	AC-14: 0.1 A/125 V	0.5 A	Neon lamp
WL \square-LD	$\begin{aligned} & \text { AC-15: } 2 \mathrm{~A} / 115 \mathrm{~V} \\ & \mathrm{DC}-12: 2 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$	10 A	LED
WL01口-LD	$\begin{aligned} & \mathrm{AC}-14: 0.1 \mathrm{~A} / 115 \mathrm{~V} \\ & \mathrm{DC}-12: 0.1 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$	0.5 A	LED

Note: As an example, AC-15: $2 \mathrm{~A} / 250 \mathrm{~V}$ means the following:

Application category	AC-15
Rated operating current (le)	2 A
Rated operating voltage (Ue)	250 V

General Ratings

Standard-load Switches

Model ${ }^{\text {Item }}$	Rated voltage (V)	Non-inductive load (A)				Inductive load (A)			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
Basic models, overtravel	$\begin{array}{r} \text { AC } 125 \\ 250 \\ 500 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{gathered} \\ \hline 3 \\ 2 \\ 1.5 \end{gathered}$	$\begin{gathered} 1.5 \\ 1 \\ 0.8 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 3 \end{gathered}$		5 3 1.5	2.5 1.5 0.8
models (except for highsensitivity models), and high-precision models	$\begin{array}{r} \hline \text { DC } 8 \\ 14 \\ 30 \\ 125 \\ 250 \end{array}$	$\begin{gathered} 10 \\ 10 \\ 6 \\ 0.8 \\ 0.4 \end{gathered}$		$\begin{gathered} 6 \\ 6 \\ 4 \\ 0.2 \\ 0.1 \end{gathered}$	$\begin{gathered} 3 \\ 3 \\ 3 \\ 0.2 \\ 0.1 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 6 \\ 0.8 \\ 0.4 \end{gathered}$		$\begin{gathered} \hline 6 \\ 6 \\ 4 \\ 0.2 \\ 0.1 \end{gathered}$	
High-sensitivity overtravel models	$\begin{array}{r} \hline \text { AC } 125 \\ 250 \end{array}$	5		---		---		---	
	$\begin{array}{r} \hline \text { DC } 125 \\ 250 \end{array}$	0.	. 2	---		---		---	

$\begin{array}{l}\text { Inrush } \\ \text { current }\end{array}$	NC	$\begin{array}{l}30 \text { A max. (15 A } \\ \text { max. (See note.)) }\end{array}$
	NO	$\begin{array}{l}\text { 20 A max. (10 A } \\ \text { max. (See note.)) }\end{array}$

Note: For high-sensitivity overtravel models.

Note 1: The above figures are for steadystate currents
2. Inductive loads have a power factor of 0.4 min . (AC) and a time conor of 0.4 min . (AC) and a time con stant of 7 ms max. (DC)
3. A lamp load has an inrush curren rent.
4. A motor load has an inrush current of 6 times the steady-state current For PC loads, use the microload models.
Indicator-equipped Switches

Model	Item	Max. rated voltage (V)	Leakage current (mA)
WL-LE	Neon lamp	125 AC	Approx. 0.6
		250 AC	Approx. 1.9
WL-LD	LED	10 to 115 AC/DC	Approx. 0.5
		10 to 24 AC/DC	Approx. 0.4

Characteristics

Degree of protection	IP67
Durability (See note 3.)	Mechanical: 15,000,000 operations min. (See note 4.) Electrical: 750,000 operations min. (See note 5.)
Operating speed	1 mm to $1 \mathrm{~m} / \mathrm{s}$ (for WLCA2)
Operating frequency	Mechanical: 120 operations/minute min. Electrical: 30 operations/minute min.
Rated frequency	$50 / 60 \mathrm{~Hz}$
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Contact resistance	$25 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength	1,000 VAC (600 VAC), $50 / 60 \mathrm{~Hz}$ for 1 min between terminals of the same polarity 2,200 VAC (1,500 VAC), $50 / 60 \mathrm{~Hz}$ for $1 \mathrm{~min} /$ Uimp 2.5 kV between current-carrying metal part and ground 2,200 VAC (1,500 VAC), $50 / 60 \mathrm{~Hz}$ for 1 min Uimp 2.5 kV between each terminal and non-current-carrying metal part
Rated insulation voltage (U_{i})	250 V (EN60947-5-1)
Switching overvoltage	1,000 V max. (EN60947-5-1)
Pollution degree (operating environment)	Level 3 (EN60947-5-1)
Short-circuit protective device (SCPD)	10 A, fuse type gG or gl (IEC269)
Conditional short-circuit current	100 A (EN60947-5-1)
Conventional enclosed thermal current ($\mathrm{I}_{\text {the }}$)	10 A, 0.5 A (EN60947-5-1)
Protection against electric shock	Class I
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude (See note 6.)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. Malfunction: $300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$. (See note 6.)
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing) (See note 7.)
Ambient humidity	Operating: 35\% to 95\%
Weight	Approx. 275 g (in the case of WLCA2)

Note 1: The above figures are initial values.
2. The figures in parentheses for dielectric strength are those for the high-sensitivity overtravel models.
3. The values are calculated at an operating temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an operating humidity of 40% to 70%. Contact your OMRON sales representative for more detailed information on other operating environments.
4. Durability is $10,000,000$ operations min. for general-purpose or high-sensitivity overtravel models, and for flexible rod models.
5. Durability is 500,000 operations min. for high-sensitivity models. All microload models however, are 1,000,000 operations min.
6. Except flexible rod models. The shock resistance (malfunction) for microload models is $200 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
7. For low-temperature models this is $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (no icing). For heat-resistant models the range is $5^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$.

Microload Switches

Refer to these ratings before using the product.

Rated voltage (V)	Resistive load (A)
AC 125	0.1
DC 30	

Operation in the following ranges will produce optimum performance.

Recommended load range	5 to 30 VDC 0.5 to 100 mA

Spatter-prevention Switches

Approved Standards

Agency	Standard	File No.	Approved models						
UL	UL508	E76675	All modes with direct-wired connectors or pre-wired						
connectors except for hermetically sealed models				$	$	CSA	CSA C22.2 No. 14	LR45746	Only models with ground terminals
:---	:---	:---	:---						
RÜV Rheinland	EN60947-5-1	J50022353	Models with direct-wired connectors and no ground terminal						
	J9950023	Only models with pre-wired connectors and DC specifications							
CCC (CQC)	GB14048.5	2003010305032365	Contact your OMRON representative for informa- tion on approved models.						

Note: Contact your OMRON representative for more information on approved models.

- Approved Standard Ratings

UL/CSA
LE Switches (Neon lamp): A300

Rated voltage	Carry current	Current (A)		Volt-amperes (VA)	
		Make	Break	Make	Break
120 VAC	10 A	60	6	7,200	720
240 VAC		30	3		

LD Switches (LED)

Rated voltage	Carry current
115 VAC	10 A
115 VDC	0.8 A

TÜV (EN60947-5-1) (Only models with ground terminals are approved.), CCC (GB14048.5)

Model	Application category and ratings
WL \square	$\begin{aligned} & A C-15: 2 \mathrm{~A} / 250 \mathrm{~V} \\ & \mathrm{DC}-12: 2 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$
WL01■	AC-14: $0.1 \mathrm{~A} / 125 \mathrm{~V}$ DC-12: $0.1 \mathrm{~A} / 48 \mathrm{~V}$
WL口-LE	AC-15: $2 \mathrm{~A} / 250 \mathrm{~V}$
WL01■-LE	AC-14: $0.1 \mathrm{~A} / 125 \mathrm{~V}$
WLD-LD	AC-15: 2 A/115 V DC-12: $2 \mathrm{~A} / 48 \mathrm{~V}$
WL01■-LD	$\begin{aligned} & \text { AC-14: } 0.1 \mathrm{~A} / 115 \mathrm{~V} \\ & \mathrm{DC}-12: 0.1 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$

Note: As an example, AC-15: $2 \mathrm{~A} / 250 \mathrm{~V}$ means the following:

Application category	AC-15
Rated operating current (le)	2 A
Rated operating voltage (Ue)	250 V

General Ratings

\|rem ${ }^{\text {Item }}$	Rated voltage (V)	Non-inductive load (A)				Inductive load (A)			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
WLD-LES	$\begin{array}{r} \hline \text { AC } 125 \\ 250 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 3 \\ & 2 \end{aligned}$	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$
WLD-LDS	AC 115	10		3	1.5	10		5	2.5
	$\begin{aligned} \text { DC } 12 \\ 24 \\ 48 \end{aligned}$	$\begin{gathered} \hline 10 \\ 6 \\ 3 \end{gathered}$		$\begin{aligned} & 6 \\ & 4 \\ & 2 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ 1.5 \end{gathered}$	$\begin{gathered} \hline 10 \\ 6 \\ 3 \end{gathered}$		642	

Inrush current	NC	30 A max.
	NO	20 A max.
Operating temperature	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)	
Operating humidity	95% max.	

Note 1: The above figures are for steadystate currents.
2. Inductive loads have a power factor of 0.4 min . AC) and a time constant of 7 ms max. (DC)
3. A lamp load has an inrush current of 10 times the steady-state current.
4. A motor load has an inrush current of 6 times the steady-state current.

Characteristics

Degree of protection	IP67
Durability (See note 3.)	Mechanical: $15,000,000$ operations min. (See note 4.) Electrical: 750,000 operations min. (See note 5.)
Operating speed	1 mm to $1 \mathrm{~m} / \mathrm{s}$ (for WLCA2)
Operating frequency	Mechanical: $\quad 120$ operations/minute min. Electrical: 30 operations/minute min.
Rated frequency	$50 / 60 \mathrm{~Hz}$
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC)
Contact resistance	$25 \mathrm{~m} \Omega$ max. (initial value)
Dielectric strength	1,000 VAC (600 VAC), $50 / 60 \mathrm{~Hz}$ for 1 min between terminals of the same polarity 2,200 VAC ($1,500 \mathrm{VAC}$), $50 / 60 \mathrm{~Hz}$ for $1 \mathrm{~min} /$ Uimp 2.5 kV between current-carrying metal part and ground 2,200 VAC ($1,500 \mathrm{VAC}$), $50 / 60 \mathrm{~Hz}$ for 1 min Uimp 2.5 kV between each terminal and non-current-carrying metal part
Rated insulation voltage (U_{i})	250 V (EN60947-5-1)
Switching overvoltage	1,000 V max. (EN60947-5-1)
Pollution degree (operating environment)	Level 3 (EN60947-5-1)
Short-circuit protective device (SCPD)	10 A , fuse type gG or gl (IEC269)
Conditional short-circuit current	100 A (EN60947-5-1)
Conventional enclosed thermal current ($\mathrm{l}_{\text {the }}$)	10 A, 0.5 A (EN60947-5-1)
Protection against electric shock	Class I
Vibration resistance	Malfunction: 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.
Ambient temperature	Operating: $-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 35\% to 95\%
Weight	Approx. 275 g (in the case of WLCA2)

Note 1: The above figures are initial values.
2. The figures in parentheses for dielectric strength are those for the high-sensitivity overtravel models.
3. The values are calculated at an operating temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ and an operating humidity of 40% to 70%. Contact your OMRON sales representative for more detailed information on other operating environments.
4. Durability is $10,000,000$ operations min. for general-purpose or highsensitivity overtravel models.
5. Durability is 500,000 operations min. for high-precision models. All microload models however, are 1,000,000 operations min.

Long－life Switches

－Approved Standards

Agency	Standard	File No．	Approved models
UL	UL508	E76675	All modes with direct－wired connectors or pre－wired connec－ tors except for hermetically sealed models
CSA	CSA C22．2 No．14	LR45746	Only models with ground terminals
TÜV Rheinland	EN60947－5－1	J50022353	Models with direct－wired connectors and no ground terminal
		J9950023	Only models with pre－wired connectors and DC specifications
		N9950959	Contact your OMRON representative for information on ap－ proved models．
CCC（CQC）	GB14048．5	2003010305032365	

Approved Standard Ratings

UL／CSA

LE Switches（Neon lamp）：A300

Rated voltage	Carry current	Current（A）		Volt－amperes（VA）	
		Make	Break	Make	Break
120 VAC	10 A	60	6	7,200	720
240 VAC		30	3		

LD Switches（LED）

Rated voltage	Carry current
115 VAC	10 A
115 VDC	0.8 A

TÜV（EN60947－5－1）（Only models with

 ground terminals are approved．）， CCC（GB14048．5）| Model | Application category and ratings | Thermal current（ $\mathrm{l}_{\text {the }}$ ） | Indicator |
| :---: | :---: | :---: | :---: |
| WL \square | AC－15： 2 A／250 V DC－12： $2 \mathrm{~A} / 48 \mathrm{~V}$ | 10 A | －－－ |
| WL01 \square | $\begin{aligned} & \text { AC-14: } 0.1 \mathrm{~A} / 125 \mathrm{~V} \\ & \mathrm{DC}-12: 0.1 \mathrm{~A} / 48 \mathrm{~V} \end{aligned}$ | 0.5 A | －－－ |
| WLD－LE | AC－15： $2 \mathrm{~A} / 250 \mathrm{~V}$ | 10 A | Neon lamp |
| WL01口－LE | AC－14： $0.1 \mathrm{~A} / 125 \mathrm{~V}$ | 0.5 A | Neon lamp |
| WL口－LD | AC－15： $2 \mathrm{~A} / 115 \mathrm{~V}$ DC－12： $2 \mathrm{~A} / 48 \mathrm{~V}$ | 10 A | LED |
| WL01口－LD | AC－14：0．1 A／115 V DC－12：0．1 A／48 V | 0.5 A | LED |

General Ratings

Refer to these ratings before using the product．
Screw Terminal Switches

Model Item	Rated voltage （V）	Non－inductive load（A）				Inductive load（A）			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
Basic models， overtravel models，（except for high－sensitivity mod－ els），and high－precision models	115 AC	10		3	1.5	10		5	2.5
	$\begin{array}{r} 12 \mathrm{DC} \\ 24 \mathrm{DC} \\ 48 \mathrm{DC} \\ 115 \mathrm{DC} \end{array}$	$\begin{gathered} 10 \\ 6 \\ 3 \\ 0.8 \end{gathered}$		6 4 4 2 0.2	$\begin{array}{\|c\|} \hline 3 \\ 3 \\ 1.5 \\ 0.2 \end{array}$	$\begin{gathered} 10 \\ 6 \\ 3 \\ 0.8 \end{gathered}$		$\begin{gathered} 6 \\ 4 \\ 2 \\ 0.2 \end{gathered}$	
High－sensitivity overtravel models	115 AC	5		－－－		－－－		－－－	
	115 DC	0.4		－－－		－－－		－－－	

Inrush current	NC	30 A max．（15 A max．（See note．））
	NO	20 A max．（10 A max．（See note．））

Note：For high－sensitivity overtravel models．

Direct－wired Connector and Pre－wired Connector Switches

Model	Rated voltage （V）	Non－inductive load（A）				Inductive load（A）			
		Resistive load		Lamp load		Inductive load		Motor load	
		NC	NO	NC	NO	NC	NO	NC	NO
DC	12 DC	3	3	3	3	3	3	3	3
	24 DC	3	3	3	3	3	3	3	3
	48 DC	3	3	3	3	3	3	3	3
	115 DC	0.8	0.8	0.2	0.2	0.8	0.8	0.2	0.2
AC	115 AC	3	3	3	1.5	3	3	3	2.5

Note 1：The above figures are for steady－state currents．
Inductive loads have a power factor of 0.4 min ． AC ）and a time constant of 7 ms max．（DC）．
．A lamp load has an inrush current of 10 times the steady－state current
times the steady－state current
Characteristics

Degree of protection	IP67
Durability （See note 2．）	Mechanical：30，000，000 operations min．（ 10 mA at 24 VDC ，resis－ tive load） Electrical：$\quad 750,000$ operations min．（10 A at 115 VAC，resistive load）， but for high－precision models：500，000 operations min．（10 A at 115 VAC，resistive load）
Operating speed	1 mm to $1 \mathrm{~m} / \mathrm{s}$（for WLCA2）
Operating frequency	Mechanical： 120 operations／minute Electrical： 30 operations／minute
Rated frequency	$50 / 60 \mathrm{~Hz}$
Insulation resistance	$100 \mathrm{M} \Omega \mathrm{min}$ ．（at 500 VDC ）
Contact resistance	$25 \mathrm{~m} \Omega$ max．（initial value）
Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between terminals of the same po－ larity．（Except connector models．） 2，200 VAC（ $1,500 \mathrm{~V}$ ）， $50 / 60 \mathrm{~Hz}$ for 1 min between current－carrying metal part and ground． 2，200 VAC（ $1,500 \mathrm{~V}$ ）， $50 / 60 \mathrm{~Hz}$ for 1 min between each terminal and non－current－carrying metal part．
Vibration resistance	10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	$\begin{array}{ll}\text { Destruction：} & 1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min} . \\ \text { Malfunction：} & 300 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min} .\end{array}$
Ambient temperature	Operating：$\quad-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$（with no icing）
Ambient humidity	Operating：35\％to 95\％
Weight	Approx． 275 g （for WLCA2）

Note 1：The figures in parentheses for dielectric strength，are those for overtravel（high－ sensitivity）or connector models．
The values are calculated at an operating temperature of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ，and an op－ erating humidity of 40% to 70% ．Contact your OMRON sales representative for more detailed information on other operating environments．

Engineering Data

Electrical Durability： $\boldsymbol{\operatorname { c o s } \phi = 1}$

（Operating temperature： $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
operating humidity： 40% to 70% ）

Connections

Contact Forms

Screw Terminal Switches

Screw Terminal and Indicatorequipped (Light-ON when Not Operating) Switches (See note 1.)

Note 1: Light-ON when not operating means the indicator is lit when the actuator is free and is not light when the Switch contacts (NO) close when the actuator rotates or is pushed down.
2. The position of the positioning piece is not always the same. If using an L-shaped connector causes problems in application, use a straight connector.

Direct-wired Connector, Pre-wired Connector, and Indicator-equipped (Light-ON when Not Operating) Switches (See note 1.)

Indicators

Note 1. Light-ON when operating means that the lamp lights when the Limit Switch contacts (NC) release, or when the actuator rotates or is pushed down.
2. Light-ON when not operating means the lamp remains lit when the actuator is free, or when the Limit Switch contacts (NO) close when the actuator rotates or is pushed down.

Nomenclature

General-purpose Switches

Requires maintenance (excessive overtravel)

Proper range
Requires maintenance (insufficient overtravel) Proper range
Requires maintenance (excessive overtravel)

Actuator

Roller
The roller is made of self-lubricating sintered stainless steel and boasts high resistance to wear.

Lever

The lever forged of anti-corrosive aluminium alloy features high corrosion resistances and outstanding ruggedness. With roller lever, adjustable rod and flexible rod models, the actuator position can be set anywhere within 360°. (The lever cannot be mounted in the opposite direction.)

Head

The Head used in the roller lever type, adjustable rod lever type, or horizontal plunger type (except for 90° operation models) can be mounted in any of the four directions by removing the screws at the four corners of the Head.

Shaft Section Seal
By fitting an O-ring to the rotary shaft and with an appropriate interference of the screws, high-sealing properties are maintained.

Head-mounting
 Head-mo Screws

Roller Lever Setscrew

Operational Plunger (See note 2.)

- Cover Seal

By using a packing seal as the cover seal, an optimum squeeze can be obtained and high sealing properties are assured as well.

Conduit Opening (See note 1.)
Phillips screws are used to ensure ease of use.
The conduit threads are parallel
threads for G $1 / 2$ tube and offer further increased sealing properties when used in conjunction with the SC connector.
Note 1. The display for conduit threads has changed from $\mathrm{PF}_{1} / 2$ to $\mathrm{G} 1 / 2$, according to revisions of JIS B 0202. This is only a change in the display, so the thread size and pitch have not changed. (Conduit threads Pg 13.5 and $1 / 2-14 \mathrm{NPT}$ are also available.)
2. By changing the orientation of the operational plunger, three operational directions can be selected electrically. (This is possible only with standard roller lever, adjustable roller lever, and adjustable rod lever models. For the overtravel models, only 90° operation models have this function.)

Environment-resistant Switches

Spatter-prevention Switches

Long-life Switches

Note: By changing the direction of the operational plunger, any one of the three operational directions (both sides, left, or right) can be selected. (Applicable only to the WLMGCA2- \square.)

Dimensions

General-purpose Models

Standard Models

Basic

Rotating Lever

Note 1. Rotating Lever Models: For all models WL \square indicates a standard-load model and WL01 \square indicates a microload model.
2. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLCA2 WL01CA2	WLCA2-7 WL01CA2-7	WLCA2-8 WLO1CA2-8	WLCA12 WL01CA12 (See note 1.)	WLCL, WLO1CL (See note 2.)
OF max.	13.34 N	10.2 N	8.04 N	13.34 N	1.39 N
RF min.	2.23 N	1.67 N	1.34 N	2.3 N	0.27 N
PT	$15 \pm 5^{\circ}$				
OT min.	30°	30°	30°	10°	
MD max.	12°	12°	12°	12°	12°

Note 1: The operating characteristics for WLCA12 and WL01CA12 are measured at the lever length of 38 mm .
2. The operating characteristics for WLCL and WL01CL are measured at the rod length of 140 mm .

Operating characteristics	WLCA32-41 to 44, WLO1CA32- 41 to 44
Force necessary to reverse the direction of the lever: Max. Movement until the lever reverses	11.77 N
Movement until switch operation: Min.	$50 \pm 5^{\circ}$
Movement after switch operation: Max.	55°

OF and RF for WLCA12, with a lever length of 89 mm .

Operating characteristics	
OF	WLCA12, WL01CA12
RF	5.68 N

Standard Models

Basic

Plunger

Note 1. For all models WL \square indicates a standard-load model and WL01 \square indicates a microload model.
2. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLD WL01D	WLD2 WL01D2	$\begin{gathered} \hline \text { WLD3 } \\ \text { WL01D3 } \end{gathered}$	$\begin{gathered} \text { WLD28 } \\ \text { WL01D28 } \end{gathered}$	WLSD2 WL01SD2	WLSD3 WL01SD3	$\begin{gathered} \text { WLSD } \\ \text { WL01SD } \end{gathered}$
OF max. RF min. PT max. OT min. MD max.	$\begin{aligned} & \hline 26.67 \mathrm{~N} \\ & 8.92 \mathrm{~N} \\ & 1.7 \mathrm{~mm} \\ & 6.4 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 26.67 \mathrm{~N} \\ & 8.92 \mathrm{~N} \\ & 1.7 \mathrm{~mm} \\ & 5.6 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 26.67 \mathrm{~N} \\ & 8.92 \mathrm{~N} \\ & 1.7 \mathrm{~mm} \\ & 4 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 16.67 \mathrm{~N} \\ & 4.41 \mathrm{~N} \\ & 1.7 \mathrm{~mm} \\ & 5.6 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 40.03 \mathrm{~N} \\ & 8.89 \mathrm{~N} \\ & 2.8 \mathrm{~mm} \\ & 5.6 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 40.03 \mathrm{~N} \\ & 8.89 \mathrm{~N} \\ & 2.8 \mathrm{~mm} \\ & 4 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline 40.03 \mathrm{~N} \\ & 8.89 \mathrm{~N} \\ & 2.8 \mathrm{~mm} \\ & 6.4 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$
OP TTP max.	$\begin{aligned} & 34 \pm 0.8 \mathrm{~mm} \\ & 29.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 44 \pm 0.8 \mathrm{~mm} \\ & 39.5 \mathrm{~mm} \\ & \hline \end{aligned}$	$44.5 \pm 0.8 \mathrm{~mm}$ 41 mm	$\begin{aligned} & 44 \pm 0.8 \mathrm{~mm} \\ & 39.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 54.2 \pm 0.8 \mathrm{~mm} \\ & --- \end{aligned}$	$\begin{aligned} & 54.1 \pm 0.8 \mathrm{~mm} \\ & --- \end{aligned}$	$40.6 \pm 0.8 \mathrm{~mm}$

Standard Models

Basic

Flexible Rod

Note 1. For all models WL \square indicates a standard-load model and WL01 \square indicates a microload model.
2. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLNJ WL01NJ (See note.)	WLNJ30 WL01NJ30 (See note.)	WLNJ-2 WL01NJ-2 (See note.)	WLNJ-S2 WL01NJ-S2 (See note.)
OF max.	1.47 N	1.47 N		
PT	$20 \pm 10 \mathrm{~mm}$	1.47 N	0.28 N	
20	$40 \pm 20 \mathrm{~mm}$	$40 \pm 20 \mathrm{~mm}$		

Note: These values are taken from the top end of the wire or spring.

Standard Models

Overtravel

General-purpose/High-sensitivity Models

Note 1. For all models WL \square indicates a standard-load model and WL01 \square indicates a microload model.
2. One-side operation is not possible with the general-purpose and high-sensitivity models.
3. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Note: 1. WL \square GL is identical to other models except in the shape of the set position marker plate
2. The built-in switch for WLHL is W-10FB3

Note: 1. Stainless sintered roller
2. WL $\square \mathrm{G} 12$ is identical to other models except in
the shape of the set position marker plate.
3. The built-in switch for WLH12 is W-10FB3.
4. The built-in switch for WLG12 is W-10FB3-8.

Adjustable Rod Lever
WLHAL4
2. WL $\square \mathrm{G} 2$ is identical to other models except in the shape of the set position marker plate.
3. The built-in switch for WLH2 is W-10FB3.
4. The built-in switch for WLG2 is W-10FB3-8.
3. The built-in switch for WLGL is W-10FB3-8.

OF and RF for WLH12 and WL01H12, with a lever length of 89 mm .

Operating characteristics	WLH12, WL01H12	WLG12, WL01G12
OF	4.18 N	4.18 N
RF	0.42 N	0.42 N

Operating characteristics	$\begin{gathered} \text { WLH2 } \\ \text { WL01H2 } \end{gathered}$	$\begin{gathered} \text { WLG2 } \\ \text { WL01G2 } \end{gathered}$	WLH12 WL01H12 (See note 1.)	$\begin{gathered} \text { WLG12 } \\ \text { WL01G12 } \\ \text { (See note 1.) } \end{gathered}$	WLHL WL01HL (See note 3.)	WLGL WL01GL (See note 3.)	WLHAL4 WL01HAL4 (See note 4.)	WLHAL5 WL01HAL5
OF max. RF min. PT OT min. MD max.	$\begin{array}{\|l\|} \hline 9.81 \mathrm{~N} \\ 0.98 \mathrm{~N} \\ 15 \pm 5^{\circ} \\ 55^{\circ} \\ 12^{\circ} \end{array}$	$\begin{aligned} & 9.81 \mathrm{~N} \\ & 0.98 \mathrm{~N} \\ & 10^{\circ}+2^{\circ} \\ & 65^{\circ} \\ & 7^{\circ} \end{aligned}$	$\begin{aligned} & 9.81 \mathrm{~N} \\ & 0.98 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 55^{\circ} \\ & 12^{\circ} \end{aligned}$	$\begin{aligned} & 9.81 \mathrm{~N} \\ & 0.98 \mathrm{~N} \\ & 10^{\circ}+2^{\circ} \\ & 65^{\circ} \\ & 7^{\circ} \end{aligned}$	$\begin{aligned} & 2.84 \mathrm{~N} \\ & 0.25 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 55^{\circ} \\ & 12^{\circ} \end{aligned}$	$\begin{aligned} & 2.84 \mathrm{~N} \\ & 0.25 \mathrm{~N} \\ & 10^{\circ}+{ }^{\circ}{ }^{\circ} \\ & 65^{\circ}{ }^{\circ} \\ & 7^{\circ} \end{aligned}$	$\begin{aligned} & \hline 0.98 \mathrm{~N} \\ & 0.15 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 55^{\circ} \\ & 12^{\circ} \end{aligned}$	$\begin{aligned} & 0.90 \mathrm{~N} \\ & 0.09 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 55^{\circ} \\ & 12^{\circ} \end{aligned}$

Note 1. With WLHAL4, WL01HAL4, WLHAL5, and WL01HAL5, the actuator's tare is large, so depending on the installation direction, they may not be properly reset. Always install so that the actuator is facing downwards.
2. The operating characteristics of WLH12, WL01HL12, WLG12, and WL01G12 are measured at the lever length of 38 mm .
3. The operating characteristics of WLHL, WL01HL, WLGL, and WL01GL are measured at the rod length of 140 mm .
4. The operating characteristics of WLHAL4, and WL01HAL4 are measured at the rod length of 380 mm .

Standard Models

Overtravel

Side-installation Models

Note 1. For all models WL \square indicates a standard-load model and WL01 \square indicates a microload model.
2. With the side-installation models, 90° operation on one side is possible by simply changing the direction of the cam.
3. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLCA2-2N WL01CA2-2N	WLCA12-2N WL01CA12-2N (See note 1.)	WLCL-2N WL01CL-2N (See note 2.)	WLCA2-2 WL01CA2-2	WLCA12-2 WL01CA12-2 (See note 1.)	WLCL-2 WL01CL-2 (See note 2.)
OF max. RF min. PT OT min. MD max.	$\begin{array}{\|l\|} \hline 9.61 \mathrm{~N} \\ 1.18 \mathrm{~N} \\ 20^{\circ} \\ 70^{\circ} \\ 10^{\circ} \end{array}$	$\begin{aligned} & 9.61 \mathrm{~N} \\ & 1.18 \mathrm{~N} \\ & 20^{\circ} \\ & 70^{\circ} \\ & 10^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.84 \mathrm{~N} \\ 0.25 \mathrm{~N} \\ 20^{\circ} \\ 70^{\circ} \\ 10^{\circ} \end{array}$	$\begin{aligned} & 8.83 \mathrm{~N} \\ & 0.49 \mathrm{~N} \\ & 25^{\circ}+5^{\circ} \\ & 60^{\circ} \\ & 16^{\circ} \end{aligned}$	$\begin{array}{\|l} \hline 8.83 \mathrm{~N} \\ 0.49 \mathrm{~N} \\ 25^{\circ} \pm 5^{\circ} \\ 60^{\circ} \\ 16^{\circ} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.55 \mathrm{~N} \\ 0.1 \mathrm{~N} \\ 25^{\circ} \pm 5^{\circ} \\ 60^{\circ} \\ 16^{\circ} \\ \hline \end{array}$

OF and RF for WLCA12-2N and WLO1CA12-2N, with a lever length of 89 mm .

Operating characteristics	WLCA12-2N, WLO1CA12-2N
OF	4.10 N
RF	0.50 N

Note 1. The operating characteristics of WLCA12-2N and WLO1CA12-2N are measured at the lever length of 38 mm .
2. The operating characteristics of WLCL-2N and WLO1CL-2N are measured at the rod length of 140 mm .

High-precision Models

WL \square are Standard Models and WL01 \square are Microload Models.

Operating characteristics	WLGCA2 WL01GCA2
OF max.	13.34 N
RF min.	1.47 N
PT	$5+0^{\circ} \mathrm{0}^{\circ}$
OT min.	40°
MD max.	3°

Note: Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Sensor I/O Connector Switches

Direct-wired Connector/Prewired Connector Models

Note: Refer to page 188 for applicable Cables.

Top-roller Plunger

WLD2
Note 1. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. The following diagrams are for a indicator-equipped models.

Direct-wired Connector Models

Note: Stainless sintered roller

Roller Lever Plungers WLロ are Standard Models and WL01 \square are Microload Models.
Standard Models (WLCA2), High-precision Models (WLGCA2),
Overtravel General-purpose Models (WLH2), Overtravel High-sensitivity Models (WLG2)

Note 1. Only the dimension of the set position marker plate is different for WLG2 Models.
2. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
3. The models with operation indicators are shown in the above diagrams.

Operating characteristics	Standard roller lever actuator	High-precision roller lever actuator	Overdrive general-purpose actuator	Overdrive high-sensitivity actuator
OF max. RF min. PT max. OT min. MD max.	$\begin{aligned} & 13.34 \mathrm{~N} \\ & 2.23 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 30^{\circ} \\ & 12^{\circ} \end{aligned}$	$\begin{aligned} & \hline 13.34 \mathrm{~N} \\ & 1.47 \mathrm{~N} \\ & 5^{\circ}+2^{\circ}{ }^{\circ} \\ & 40^{\circ} \\ & 3^{\circ} \end{aligned}$	$\begin{aligned} & 9.81 \mathrm{~N} \\ & 0.98 \mathrm{~N} \\ & 15 \pm 5^{\circ} \\ & 55^{\circ} \\ & 12^{\circ} \end{aligned}$	9.81 N 0.98 N $100^{+20^{\circ}}$ 65^{-1} 7°

Indicator-equipped Models

Roller Lever

Note: Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLCA2-LE/LD WL01CA2-LE/LD
OF max.	13.34 N
RF min.	2.23 N
PT	$15 \pm 5^{\circ}$
OT min.	30°
MD max.	12°

Spatter-prevention Models

Note: Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	Roller Lever				Sealed Top-roller Plunger
	Basic	Overtravel models		Highprecision	
		General-purpose	High-sensitivity		
OF max.	13.34 N	9.81 N	9.81 N	13.34 N	16.67 N
RF min.	2.23 N	0.98 N	0.98 N	1.47 N	4.41 N
PT	$15^{\circ} \pm 5^{\circ}$	$15^{\circ} \pm 5^{\circ}$	$10^{\circ}{ }_{-1^{\circ}}$	$10^{\circ}{ }_{-1}{ }^{\circ}$	1.7 mm max.
OT min.	30°	55°	65°	40°	5.6 mm
MD max.	12°	12°	7°	3°	1 mm
OP	---	---	---	---	$4 \pm 0.8 \mathrm{~mm}$
TTP max.	---	---	---	---	39.5 mm

Long-life Models

Rotating Lever Models

Note: Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.

Operating characteristics	WLMCA2-LD \square Basic models	WLMH2-LD \square General-purpose overtravel models	WLMG2-LD \square High-sensitivity overtravel models	WLMGCA2-LD \square High-precision models
OF max.	9.81 N	9.81 N	9.81 N	13.34 N
RF min.	0.98 N	0.98 N	0.98 N	1.47 N
PT max.	$15 \pm 5^{\circ}$	$15 \pm 5^{\circ}$	$10^{\circ}+2^{\circ}$	$5^{\circ+2^{\circ}} 0^{\circ}$
OT min.	30°	55°	65°	40°
MD max.	12°	12°	7°	

Actuators (Levers Only)

Note 1. Lever: Only rotating lever models are illustrated.
2. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
3. When using the adjustable roller (rod) lever, make sure that the lever is facing downwards. Use caution, as telegraphing (the Switch turns ON and OFF repeatedly due to inertia) may occur.

Standard Lever	Resin Roller	Bearing Roller	Nylon Roller: Roller Width: $\mathbf{3 0} \mathbf{~ m m}$
WL-1A105 Double Nut	WL-1A103S Spatter Prevention	WL-1A200 Lever Length: 50 Roller Width: 15	WL-1A300 Lever Length: 63
WL-2A100 17.5 dia. (length: 7) stainless sintered alloy roller Adjustable lever: range: 25 to 89	WL-2A111 Resin Roller	WL-2A107 Double Nut	WL-2A108 Resin Roller
WL-2A122 17.5 dia. (length: 7) stainless	WL-2A106 Note: Can be installed on the rear side.		WL-2A104

Actuators (Levers Only)

Note 1. Unless otherwise indicated, a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions.
2. When using the adjustable roller (rod) lever, make sure that the lever is facing downwards. Use caution, as telegraphing (the Switch turns ON and OFF repeatedly due to inertia) may occur.

WL-2A110	WL-2A105	WL-1A106	WL-1A110
WL-4A100	WL-4A201	WL-3A100	
WL-3A108	WL-3A200	WL-3A203	WL-4A112
WL-2A129	WL-5A101	WL-5A10	WL-5A105
	WL-5A100 has a plastic roller		WL-5A104 has a plastic roller

Precautions

Refer to the "Precautions for General-purpose Limit Switches (Including Multiple Limit Switches, Mechanical Touch Switches, High-precision Switches, Touch Switches, On-site Flexible Switches; Not Including Safety Switches)" on page 17.

- Correct Use

When a rod or wired-type actuator is used, do not touch the top end of the actuator. Doing so may result in injury.
Applicable models: WLHAL5 and WL01HAL5 Rod Spring Levers and WLNJ-S2 and WL01NJ-S2 Steel-wire Actuators

A short-circuit may cause damage to the Switch, so insert a circuit breaker fuse, of 1.5 to 2 times the rated current, in series with the Switch.
In order to meet EN approval ratings, use a 10-A fuse that corresponds to IEC269, either a gl or gG for general-purpose types and spatter-prevention models only.

Precautions for Correct Use

When wiring terminal screws, use M4 round crimp terminals and tighten screws to the recommended torque. Wiring with bare wires, or incorrect crimp terminals, or not tightening screws to the recommended torque can lead to short-circuits, leakage current, and fire.
When performing internal wiring there is a chance of short-circuit, leakage current, or fire, so be sure to protect the inside of the Switch from splashes of oil or water, corrosive gases, and cutting powder.
Using an inappropriate connector or assembling Switches incorrectly (assembly, tightening torque) can result in malfunction, leakage current, or fire, so be sure to read the instruction manual thoroughly beforehand.
Even when the connector is assembled and set correctly, the end of the cable and the inside of the Switch may come in contact. This can lead to malfunction, leakage current, or fire, so be sure to protect the end of the cable from splashes of oil or water and corrosive gases.

Operating Environment

- Seal material may deteriorate if a Switch is used outdoor or where subject to special cutting oils, solvents, or chemicals. Always appraise performance under actual application conditions and set suitable maintenance and replacement periods.
- Install Switches where they will not be directly subject to cutting chips, dust, or dirt. The Actuator and Switch must also be protected from the accumulation of cutting chips or sludge.

- Constantly subjecting a Switch to vibration or shock can result in wear, which can lead to contact interference with contacts, operation failure, reduced durability, and other problems. Excessive vibration or shock can lead to false contact operation or damage. Install Switches in locations not subject to shock and vibration and in orientations that will not produce resonance.
- The Switches have physical contacts. Using them in environments containing silicon gas will result in the formation of silicon oxide $\left(\mathrm{SiO}_{2}\right)$ due to arc energy. If silicon oxide accumulates on the contacts, contact interference can occur. If silicon oil, silicon filling agents, silicon cables, or other silicon products are present near the Switch, suppress arcing with contact protective circuits (surge killers) or remove the source of silicon gas.

Built-in Switch

Do not remove or replace the built-in switch. If the position of the built-in switch moves, it can cause reduced performance, and if the insulation sheet moves (separator), the insulation may become ineffective.

Tightening Torque

If screws are too loose they can lead to an early malfunction of the Switch, so ensure that all screws are tightened using the correct torque.
In particular, when changing the direction of the Head, make sure that all screws are tightened again to the correct torque. Do not allow foreign objects to fall into the Switch.

No.	Type	Torque
(1)	Head mounting screw	0.78 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$
(2)	Cover mounting screw	1.18 to $1.37 \mathrm{~N} \cdot \mathrm{~m}$
(3)	Allen-head bolt (for securing the lever)	4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$
(4)	Terminal screw	0.59 to $0.78 \mathrm{~N} \cdot \mathrm{~m}$
(5)	Connector	1.77 to $2.16 \mathrm{~N} \cdot \mathrm{~m}$
(6)	Main Unit screws	4.90 to $5.88 \mathrm{~N} \cdot \mathrm{~m}$

Installing the Switch

To install the Switch, make a mounting panel, as shown in the following diagram, and tighten screws using the correct torque.

General-purpose Models, Spatter-prevention Models, and Long-life Models	Side installation for 90° Operation Models
Four, $5.2^{+0.2}$ dia. mounting holes or M5 taps	Two, $5.2^{+0.2}$ dia. mounting holes

Connectors

Either the easy-to-use Allen-head nut or the SC Connector can be used as connectors. To ensure high-sealing properties, use the SC Connector. Consult your OMRON representative for details.

Wiring

Use $1.25-\mathrm{mm}$ lead wires and M4-insulation covered crimp terminals for wiring.

Crimp Terminal External Dimensions

dz dia.: 4.3
D dia.: 4.5
B: $\quad 8.5$
$\begin{array}{ll}\mathrm{L}: & \quad 21.0 \\ \mathrm{~F} . & 7.8\end{array}$
$\ell: \quad 9.0(\mathrm{~mm})$
Note: The ground terminal is only installed on models with ground terminals.
Rotating Lever Set Position (General-purpose or Spatter-prevention Switches Only)
All rotating lever models, except the fork lever lock models, have a set position marker plate. (See page 54.) After operation, set the indicator needle on the marker plate so that is in the convex section of the bearing.

Operation Set Position (Long-life Switches Only)

For all Long-life Switching, there is a set position marker slit on the rubber cap of the head. After operation, set the slit on the rubber cap so that the fluorescent color on the shaft section can be seen.

Terminal Plate

By using a short circuit plate, as shown in the following diagram, the Switch can be fabricated into a single-polarity double-break switch. When ordering, specify WL Terminal Plate (product code: WL9662F).

Installation

Item	Applicable models and Actuators	Details
Changing the Installation Position of the Actuator By loosening the Allen-head bolt on the actuator lever, the position of the actuator can be set anywhere within the 360°. With Indicator-equipped Switches, the actuator lever comes in contact with the top of the indicator cover, so use caution when rotating and setting the lever. When the lever only moves forwards and backwards, it will not contact the lamp cover (except for long-life models).	Roller Levers: WLCA2, WL01CA2, WLCA2-2, WL01CA2-2, WLH2,WL01H2, WLG2, WL01G2, WLMCA2 \square, WLMH2 \square, WLMG2 \square, WLMGCA2 \square Adjustable Roller Levers: WLCA12, WL01CA12, WLCA12-2, WL01CA12- 2, WLH12, WL01H12, WLG12, WL01G12, Adjustable Rod Levers: WLCL, WL01CL, WLCL-2, WL01CL-2, WLHL, WL01HL, WLGL, WL01GL	
Changing the Orientation of the Head By removing the screws in the four corners of the Head, the Head can be set in any of the four directions. Be sure to change the plunger for internal operations at the same time. (The operational plunger does not need to be changed on general-purpose and high-sensitivity overtravel models.) The roller plunger can be set in either two positions at 90°. WLCA2-2N and WL01CA2-2N can be set only in either the forward or backward direction.	Roller Levers: WLCA \square, WL01CA \square, WLCA $\square-2$, WL01CA $\square-2$, WLGCA \square, WLMCA2 \square, WLMH2 \square, WLMG2 \square, WLMGCA2 Adjustable Rod Levers: WLCL, WL01CL, WLCL-2, WL01CL-2 Horizontal Plungers: WLSD \square, WL01SD \square Top-roller Plungers: WLD2, WL01D2 Sealed Top-roller Plungers: WLD28, WL01D28 Note: Does not include -RP60 Series or -141 Series.	
Changing the Operating Direction By removing the Head on models which can operate on one-side only, and then changing the direction of the operational plunger, one of three operating directions can be selected. For overtravel 90° operation models, one of three operating directions can be selected by loosening the rubber holder using either a coin or a flat-blade screwdriver and changing the direction of the internal rubber section. The tightening torque for the screws on the Head is 0.78 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$.	Roller Levers: WLCA2, WL01CA2, WLGCA2, WLMGCA2 \square Adjustable Roller Levers: WLCA12, WL01CA12 Adjustable Rod Levers: WLCL, WL01CL Overtravel Models: WLCA $\square-2 N$, WL01CA $\square-2 N$	One-side Operation for General-purpose and High-precision Switches The output of the Switch will be changed, regardless of which direction the lever is pushed. Operation in both directions The output of the Switch will only be changed when the lever is pushed in one direction. Cam Direction Changing Procedure for Overtravel, 90° Operation Switches Change the direction of the Loosen the cam holder with cam as required by your ina coin or screwdriver. Take tended operation and then out the cam from the Switch. reinstall the cam. Relationship of cam to operation as observed from the rear of Switch

Item	Applicable models and Actuators	Details
Installing the Roller on the Inside By installing the roller lever in the opposite direction, the roller can be installed on the inside. (Set so that operation can be completed within a 180° level range.)	Roller Levers: WLCA \square, WL01CA \square, WLH \square, WLCA $\square-2$, WL01CA \square-2, WLMCA2 \square, WLMH2 \square, WLMG2 \square, WLMGCA2 \square, WLG \square, except for the adjustable roller levers. Fork Lever Locks: WLCA32-4 \square, WL01CA32-4	
Selecting the Roller Position There are four types of fork lever lock for use depending on the roller position.	Fork Lever Locks: WLCA32-4 \square, WL01CA32-4	WLCA32-43 Note: An explanation of the operation of fork lever locks is provided after this table.
Adjusting the Length of the Rod or Lever The length of the rod or lever can be adjusted by loosening the Allen-head bolt.	Adjustable Roller Levers: WLCA12, WL01CA12 etc. Adjustable Rod Levers: WLCL, WL01CL, etc.	

Operation of Fork Lever Locks

The fork lever lock is configured so that the dog pushes the lever to reverse the output and this reversed state is maintained even after the dog continues on. If the dog then pushes the lever from the opposite direction, the lever will return to its original position.

NC terminal: ON

NO terminal: ON

NO terminal: ON

1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed part of all quotes, agreements, purchase orders, acknowledgments, price lists catalogs, manuals, brochures and other documents, whether electronic or in writing, relating to the sale of products or services (collectively, the "Products") by Omron Electronics LLC and its subsidiary companies ("Omron"). Omron objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.
2. Prices; Payment Terms. All prices stated are current, subject to change without notice by Omron. Omron reserves the right to increase or decrease prices on any unshipped portions of outstanding orders. Payments for Products are due net 30 days unless otherwise stated in the invoice.
3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and will be allowed only if (i) the invoice is paid according to Omron's payment terms and (ii) Buyer has no past due amounts.
4. Interest. Omron, at its option, may charge Buyer 1-1/2\% interest per month or the maximum legal rate, whichever is less, on any balance not paid within the stated terms.
5. Orders. Omron will accept no order less than $\$ 200$ net billing.
. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products
6. Taxes. All taxes, duties and other governmental charges (other than genera real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, consumption or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Omron.
7. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Omron may (without liability and in addition to other remedies) cancel any unshipped portion of Products sold hereunder and stop any Products in transit until Buyer pays all amounts, including amounts payable hereunder, whether or not then due which are owing to it by Buyer. Buyer shall in any event remain liable for all unpaid accounts
8. Cancellation; Etc. Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Omron against all related costs or expenses
9. Force Majeure. Omron shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority
10. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:
a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship except in "break down" situations
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shal constitute delivery to Buyer;
c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid;
d. Delivery and shipping dates are estimates only; and
e. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.
11. Claims. Any claim by Buyer against Omron for shortage or damage to the Products occurring before delivery to the carrier must be presented in writing to Omron within 30 days of receipt of shipment and include the original transportation bill signed by the carrier noting that the carrier received the Products from Omron in the condition claimed.
12. Warranties. (a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or oth erwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obli gation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsi ble for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were prop erly handled, stored, installed and maintained and not subject to contamina tion, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Compa nies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components circuits, system assemblies or any other materials or substances or environ ments. Any advice, recommendations or information given orally or in writing are not to be construed as an amendment or addition to the above warranty See http://oeweb.omron.com or contact your Omron representative for pub lished information
14. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individua price of the Product on which liability is asserted.
Indemnities. Buyer shall indemnify and hold harmless Omron Companies and their employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, inves tigation, litigation or proceeding (whether or not Omron is a party) which arise or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (a its own expense) shall indemnify and hold harmless Omron and defend or set tle any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party
16. Property; Confidentiality. Any intellectual property in the Products is the exclu sive property of Omron Companies and Buyer shall not attempt to duplicate it in any way without the written permission of Omron. Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shal remain the exclusive property of Omron. All information and materials supplied by Omron to Buyer relating to the Products are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party
17. Export Controls. Buyer shall comply with all applicable laws, regulations and licenses regarding (i) export of products or information; (iii) sale of products to "forbidden" or other proscribed persons; and (ii) disclosure to non-citizens o regulated technology or information.
18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right and no course of dealing between Buyer and Omron shall operate as a waiver of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder without Omron's written consent. (c) Law. These Terms are governed by the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Products (without regard to conflict of law princi ples). (d) Amendment. These Terms constitute the entire agreement between Buyer and Omron relating to the Products, and no provision may be changed or waived unless in writing signed by the parties. (e) Severability. If any provi sion hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision. (f) Setoff. Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice. (g) Definitions. As used herein, "including" means "including without limitation"; and "Omron Companies" (or similar words) mean Omron Corporation and any direct or indirect subsidiary or affiliate thereof

Certain Precautions on Specifications and Use

1. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by ratings and limitations of use which apply to the Product. This information by
itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases but the following is a non-exhaustive list of applications for which particular attention must be given: (i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations. (iv) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this Product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON'S PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM
2. Programmable Products. Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.
3. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application require ments. Actual performance is subject to the Omron's Warranty and Limitations of Liability.
4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.
5. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Complete "Terms and Conditions of Sale" for product purchase and use are on Omron's website at www.omron247.com - under the "About Us" tab, in the Legal Matters section.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONICS LLC
1 Commerce Drive
Schaumburg, IL 60173
Tel: 847.843.7900
For U.S. technical support or other inquiries: 800.556.6766
OMRON CANADA, INC.
885 Milner Avenue
Toronto, Ontario M1B 5V8 Tel: 416.286.6465

