Specification for BTHQ 128064AVE-FETF-06-LEDWHITE-COG

Version November 2003

DOCUMENT REVISION HISTORY 1:

DOCUMENT REVISION FROM TO	DATE	DESCRIPTION	CHANGED BY	CHECKED BY
A	2003.11.28	First Release.	SUNNY LEE	PRITT LEE

CONTENTS

Page No.

1. GENERAL DESCRIPTION 4
2. MECHANICAL SPECIFICATIONS 4
3. INTERFACE SIGNALS 7
4. ABSOLUTE MAXIMUM RATINGS 9
4.1 ELECTRICAL MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$ 9
4.2 ENVIRONMENTAL CONDITION 9
5. ELECTRICAL SPECIFICATIONS 10
5.1 TYPICAL ELECTRICAL CHARACTERISTICS 10
5.2 TIMING SPECIFICATIONS 11
5.3 INSTRUCTION SET 14
6. REFERENCE APPLICATION CIRCUIT (8080) EXAMPLE 15

Specification of
 LCD Module Type
 Model No.: COG-BTHQ12864-03

1.General Description

- 128 x 64 dots FSTN Positive Black \& White Transflective Dot Matrix LCD Module.
- Viewing Angle: 6 o'clock direction.
- Driving duty: $1 / 65$ duty, $1 / 7$ bias.
- 'Epson' SED1565D0B (COG) Dot Matrix LCD Driver.
- 8080 Series MPU interface (default).
- 6800 Series MPU interface (Optional).
- FPC.
- White LED05 backlight.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Table 1

Parameter	Specifications	Unit
Outline dimensions	$89.7(\mathrm{~W}) \times 49.8(\mathrm{H}) \times 6.0(\mathrm{D})($ Exclude FPC \& gate)	mm
	$89.7(\mathrm{~W}) \times 149.8(\mathrm{H}) \times 6.0(\mathrm{D})($ Include FPC. Exclude gate)	
	$89.7(\mathrm{~W}) \times 150.0(\mathrm{H}) \times 6.0(\mathrm{D})($ (nclude FPC and gate)	
View area	$66.8 \mathrm{MIN} .(\mathrm{W}) \times 35.5 \mathrm{MIN} .(\mathrm{H})$	mm
Active area	$63.985(\mathrm{~W}) \times 31.985(\mathrm{H})$	mm
Display format	$128(\mathrm{~W}) \times 64(\mathrm{H})$	dots
Dot size	$0.485(\mathrm{~W}) \times 0.485(\mathrm{H})$	mm
Dot spacing	$0.015(\mathrm{~W}) \times 0.015(\mathrm{H})$	mm
Dot pitch	$0.500(\mathrm{~W}) \times 0.500(\mathrm{H})$	mm
Weight:	TBD	grams

BATRON

Figure 1: Module Specification

PAGE 6 OF 15

Figure 2: Block Diagram

3. Interface signals

Table 2 (a)

$\begin{array}{\|l} \hline \text { Pin } \\ \text { No. } \\ \hline \end{array}$	Symbol	Description
1	NC	No connection.
2	/CS1	This is the chip select signal. When /CS1 = "L", then the chip select become active, and data/command I/O is enabled.
3	/RES	When /RES is set to "L," the settings are initialized. The reset operation is performed by the /RES signal level.
4	A0	This is connected to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command. A $0=$ "H": Indicates that D0 to D7 are display data. A0 $=$ "L": Indicates that D0 to D7 are control data.
5	/WR	When connected to an 8080 MPU, this is active LOW. This terminal connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the /WR signal.
6	/RD	When connected to an 8080 MPU , this is active LOW. This pin is connected to the /RD signal of the 8080 MPU, and the SED1565 series data bus is in an output status when this signal is "L".
7	D0	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit 8 standard
8	D1	MPU data bus.
9	D2	
10	D3	
11	D4	
12	D5	
13	D6	
14	D7	
15	VDD	Power supply. Shared with the MPU power supply terminal VCC.
16	GND	Connection with ground.
17	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and GND .
18	CAP3-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.
19	CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1terminal.
20	CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.
21	CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.
22	CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2terminal.

NOV/2003
PAGE 8 OF 15

Table 2 (b)

Pin No.	Symbol	Description
$23 \sim$	V1,V2, V3,V4, V5	This is a multi-level power supply for the liquid crystal drive. The voltage applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VDD, and must maintain the relative magnitudes shown below. VDD (= V0) $\geqq \mathrm{V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 5$ Master operation: When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: V1=(1/7)xV5, V2=(2/7)xV5, V3=(5/7)xV5, V4=(6/7)xV5.
28	VR	Output voltage regulator terminal. Provides the voltage between VDD and V5 through a resistive voltage divider. These are only enabled when the V5 voltage regulator internal resistors are not used (IRS = "L"). These cannot be used when the V5 voltage regulator internal resistors are used (IRS $=$ "H").
29	C86	This is the MPU interface switch terminal. C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 MPU interface.
30	IRS	This terminal selects the resistors for the V5 voltage level adjustment. IRS = "H": Use the internal resistors IRS = "L": Do not use the internal resistors. The V5 voltage level is regulated by an external resistive voltage divider attached to the VR terminal. This pin is enabled only when the master operation mode is selected. It is fixed to either "H" or "L" when the slave operation mode is selected.
	Anode of backlight Cathode of backlight.	

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$)

Table 3

Parameter		Symbol	Min.	Max.	Unit
Power Supply voltage (Logic)		VDD-GND	-0.3	+7.0	V
Power supply voltage (VDD standard)		GND(=VSS2)	-7.0	+0.3	V
	With Triple set-up		-6.0	+0.3	V
	With Quad step-up		-4.5	+0.3	V
Power Supply voltage(V5,VOUT) (VDD standard)		V5,VOUT	-18.0	+0.3	V
Power Supply voltage(V1~V4) (VDD standard)		V1,V2,V3,V4	V5	+0.3	V
Input voltage		Vin	-0.3	VDD+0.3	V

Note: 1.)The modules may be destroyed if they are used beyond the absolute maximum ratings.
2.) Insure that the voltage levels of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$, and V 4 are always such that

$$
\mathrm{VDD} \geqq \mathrm{~V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 4 \geqq \mathrm{~V} 5 .
$$

3.) The VSS2,V1 to V5 and VOUT are relative to VDD $=0 \mathrm{~V}$ reference.

4.2 Environmental Condition

Table 4

Item	Operating Temperature (Topr)		Storage Temperature (Tstg)	Remark	
	Min.		Max.		Max.

5. Electrical Specifications

5.1 Typical Electrical Characteristics

At $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V} \pm 5 \%$, GND $=0 \mathrm{~V}$.

Table 5

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage (Logic)	VDD-GND		4.75	5.0	5.25	V
Supply voltage (LCD)	VLCD =VDD-V5	VDD = +5.0V, Note (1)	8.6	8.9	9.2	V
Low-level input signal voltage	V		GNC	-	0.2 xVDD	V
High-level input signal voltage	VIHC		0.8 xVDD	-	VDD	V
Supply Current (Logic \& LCD)	IDD	VDD = 5V, Character mode	-	0.5	0.7	mA
VDD $=5 \mathrm{~V}$, Checker board mode	-	1.1	1.3	mA		
Supply voltage of white LED05 backlight	VLED05	Forward current $=45 \mathrm{~mA}$	4.8	5.0	5.2	V

Note (1): There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

5.2 Timing Specifications

Reset Timing

At $\mathrm{Ta}=-\mathbf{2 0}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}$.

Table 6

Item	Signal	Symbol	Condition	Rating			Units
				Min	Typ	Max	
Reset time		tR		-	-	0.5	$\mu \mathrm{s}$
Reset "L" pulse width	RES	trw		0.5	-	-	$\mu \mathrm{s}$

Note: All timing is specified with 20% and 80% of VDD as the standard.

Figure 3:Reset Timing

System Bus Read/Write Characteristics ($\mathbf{8 0 8 0}$ Series MPU)

At $\mathbf{T a}=\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}$.

Table 7

Item	Signal	Symbol	Condition	Rating		Units
				Min	Max	
Address hold time Address setup time	A0	$\begin{aligned} & \hline \text { tAH8 } \\ & \text { taW8 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
System cycle time	A0	tcyc8		166	-	ns
Control L pulse width (WR) Control L pulse width (RD) Control H pulse width (WR) Control H pulse width (RD)	$\begin{aligned} & \overline{W R} \\ & \frac{R D}{} \\ & \hline W R \\ & \hline \mathrm{RD} \\ & \hline \end{aligned}$	tcclw tccle tcchw tCCHR		$\begin{aligned} & 30 \\ & 70 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Data setup time Address hold time	D0 to D7	$\begin{aligned} & \hline \text { tDS8 } \\ & \text { tDH8 } \end{aligned}$		$\begin{aligned} & \hline 30 \\ & 10 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\overline{R D}$ access time Output disable time		$\begin{aligned} & \hline \text { tACC8 } \\ & \text { toH8 } \end{aligned}$	$\mathrm{CL}=100 \mathrm{pF}$	5	$\begin{aligned} & \hline 70 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

*1 The input signal rise time and fall time (t , t$)$) is specified at 15 ns or less. When the system cycle time is extremely fast, ($\mathrm{tr}+\mathrm{t} \mathrm{f}) \leq(\mathrm{tcYC8}-\mathrm{tcCLW}-\mathrm{tcCHW})$ for ($\mathrm{tr}+\mathrm{t}$) $\leq(\mathrm{tCYC8}-\mathrm{tcCLR}-\mathrm{tcCHR})$ are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tcclw and tccle are specified as the overlap between $\overline{\mathrm{CS} 1}$ being "L" (CS2 = "H") and $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ being at the " L " level.

Figure 4: MPU bus read / write timing diagram (80 family MPU)

System Bus Read/Write Characteristics ($\mathbf{6 8 0 0}$ Series MPU)
At $\mathbf{T a}=-20{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}$.

Table 8

Item		Signal	Symbol	Condition	Rating		Units	
		Min			Max			
Address hold time Address setup time			A0	$\begin{array}{\|l\|l} \hline \text { taH6 } \\ \text { taW6 } \\ \hline \end{array}$		$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
System cycle time		A0	tcyc6		166	-	ns	
Data setup time Data hold time		D0 to D7	$\begin{array}{\|l\|} \hline \text { tDS6 } \\ \text { tDH6 } \end{array}$		$\begin{aligned} & 30 \\ & 10 \end{aligned}$	-	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
Access time Output disable time			$\begin{aligned} & \text { taCC6 } \\ & \text { to } \end{aligned}$	$\mathrm{CL}=100 \mathrm{pF}$	$\overline{10}$	$\begin{aligned} & 70 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$	
Enable H pulse time	Read Write	E	tewhr tEWHW		$\begin{aligned} & 70 \\ & 30 \end{aligned}$	-	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
Enable L pulse time	Read Write	E	$\begin{aligned} & \hline \text { tEWLR } \\ & \text { tEWLW } \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	

*1 The input signal rise time and fall time (tr , tf) is specified at 15 ns or less. When the system cycle time is extremely fast, ($\mathrm{tr}+\mathrm{tf}$) $\leq(\mathrm{tcYC6}-\mathrm{tEWLW}-\mathrm{tEWHW})$ for $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tcYC6}-\mathrm{tEWLR}-\mathrm{tEWHR})$ are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between $\overline{\mathrm{CS} 1}$ being "L" (CS2 = "H") and E.

Figure 5: MPU bus read / write timing diagram (68 family MPU)

PAGE 14 OF 15

5.3 Instruction Set

Table 8

(Note) *: disabled data
6. Reference Application Circuit (8080) Example

