Photomicrosensor (Actuator Mounted) EE-SA107-P2

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Internal Circuit

Terminal No.	Name
A	Anode
C	Collector
K, E	Cathode, Emitter

Note: The asterisked dimension is specified by datum A only.
Unless otherwise specified, the tolerances are as shown below.

Dimensions	Tolerance
3 mm max.	± 0.3
$3<\mathrm{mm} \leq 6$	± 0.375
$6<\mathrm{mm} \leq 10$	± 0.45
$10<\mathrm{mm} \leq 18$	± 0.55
$18<\mathrm{mm} \leq 30$	± 0.65

Features

- An actuator can be attached.
- Snap-in mounting model.
- Mountable to 1.0-, 1.2- and 1.6-mm-thick boards.
- Connects to Tyco Electronics AMP's CT-series connectors.
- Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rated value
Emitter	Forward current	I_{F}	50 mA (see note)
	Pulse forward cur- rent	I_{FP}	---
	Reverse voltage	V_{R}	4 V
Detector	Collector-Emitter voltage	$\mathrm{V}_{\mathrm{CEO}}$	30 V
	Emitter-Collector voltage	$\mathrm{V}_{\mathrm{ECO}}$	5 V
	Collector current	I_{C}	20 mA
	Collector dissipa- tion	P_{C}	100 mW $($ see note 1)
Ambient tem- perature	Operating	Topr	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
	Storage	Tstg	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Soldering temperature	Tsol	---	

Note: Refer to the temperature rating chart if the ambient temperature exceeds $25^{\circ} \mathrm{C}$.

Recommended Mating Connectors:
Tyco Electronics AMP 173977-3 (press-fit connector)
175778-3 (crimp connector)
179228-3 (crimp connector)
Electrical and Optical Characteristics ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Value	Condition
Emitter	Forward voltage	V_{F}	1.2 V typ., 1.5 V max.	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$
	Reverse current	I_{R}	$0.01 \mu \mathrm{~A}$ typ., $10 \mu \mathrm{~A}$ max.	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
	Peak emission wavelength	λ_{P}	940 nm typ.	$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~mA}$
Detector	Light current	I_{L}	0.5 mA min., 14 mA max.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$
	Dark current	I_{D}	200 nA max.	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, 0 \mathrm{~lx}$
	Leakage current	$\mathrm{I}_{\text {Leak }}$	---	---
	Collector-Emitter saturated voltage	$\mathrm{V}_{\text {CE }}$ (sat)	0.1 V typ., 0.4 V max.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=0.3 \mathrm{~mA}$
	Peak spectral sensitivity wavelength	λ_{P}	850 nm typ.	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Rising time		tr	$8 \mu \mathrm{~s}$ typ.	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$
Falling time		tf	$8 \mu \mathrm{~s}$ typ.	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$

Engineering Data

Forward Current vs. Collector Dissipation Temperature Rating

Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

Response Time vs. Load Resistance Characteristics (Typical)

Recommended Mounting Holes

Refer to EE-SA407-P2 on page 208.

Forward Current vs. Forward Voltage Characteristics (Typical)

Relative Light Current vs. Ambient Temperature Characteristics (Typical)

Sensing Position Characteristics (Typical)

Note: 1. Make sure that the portions marked with dotted lines have no burrs.
2. The material of the actuator must be selected by considering the infrared permeability of the actuator.

