## Type 947C High Capacitance, High Current, DC Link Capacitors

## **Metallized Polypropylene Dielectric**



Type 947C series uses the most advanced metallized film technology for long life, high reliability in DC link applications. Their high-voltage and high-current ratings allow for replacement of ser'es-parallel banks of aluminum electrolytic capacitors in high ripple current applications.

## **Applications:**

Inverters: >5kW

Renewable Energy Inverters. Wind, Solar, Fuel Cell Aircraft Inverters Power Supplies and Motor Drives Transportation: Electric Vehicles, Traction Industrial: Vielders, Motor Drives, Elevators, and Conchead Cranes

### **Specifications** -

| 230 ⊾⊑ to 730 µF                  |
|-----------------------------------|
| +10%                              |
| 8.0 Vdc, 1000 Vdc, 1200 Vdc       |
| 60 Arms                           |
| 150% rated DC voltage 10s         |
| 4 kVrms @ 50 Hz for 1 min.        |
| 60,000 hrs @ 40 °C, rated voltage |
|                                   |

### **Ratings**

|              | •   |         |        |            |         |      |                     |         |      |
|--------------|-----|---------|--------|------------|---------|------|---------------------|---------|------|
| Catalog      |     | K te a  |        |            | Typical |      |                     |         |      |
| Part Number  | Cap | Voltage | Height | Irms       | Rs(mW)2 | Ls   | θcc                 | θса     | Mass |
|              | IF. | (Vdc)   | (mm)   | <b>(A)</b> | (mΩ)²   | (nH) | (°C/W) <sup>3</sup> | (°C/W)⁴ | (kg) |
| 947C361K801  | 361 | 800     | 97     | 72         | 1.3     | 60   | 3.0                 | 2.9     | 0.9  |
| 947C491K۶ J1 | 490 | 800     | 120    | 70         | 1.6     | 75   | 2.6                 | 2.5     | 1.0  |
| 947C601Kと`1  | 600 | 800     | 145    | 68         | 2.0     | 85   | 2.2                 | 2.1     | 1.2  |
| 947C731K801  | 730 | 800     | 170    | 68         | 2.3     | 95   | 1.9                 | 1.9     | 1.3  |
| 947C231K102  | 230 | 1000    | 97     | 67         | 1.5     | 60   | 3.0                 | 2.9     | 0.9  |
| 947C311K102  | 310 | 1000    | 120    | 63         | 2.0     | 75   | 2.6                 | 2.5     | 1.0  |
| 947C391K102  | 390 | 1000    | 145    | 62         | 2.4     | 85   | 2.2                 | 2.1     | 1.2  |
| 947C471K102  | 470 | 1000    | 170    | 60         | 2.9     | 95   | 1.9                 | 1.9     | 1.3  |
| 947C161K122  | 160 | 1200    | 97     | 62         | 1.8     | 60   | 3.0                 | 2.9     | 0.9  |
| 947C211K122  | 210 | 1200    | 120    | 57         | 2.4     | 75   | 2.6                 | 2.5     | 1.0  |
| 947C271K122  | 270 | 1200    | 145    | 56         | 2.9     | 85   | 2.2                 | 2.1     | 1.2  |
| 947C321K122  | 320 | 1200    | 170    | 56         | 3.4     | 95   | 1.9                 | 1.9     | 1.3  |

 $\Delta T_{MAX} = 40 \ ^{\circ}C$ 

Notes:

- 1. Rated Current is at 1 to 20 kHz at 40 °C core temperature rise above ambient.
- 2. ESR is specified at 10 kHz.
- θcc (core-to-case thermal resistance) value is at 0 to 10 kHz. For higher frequencies, use the multipliers in the table entitled (θcc Frequency Multipliers" or use the formula θcc Frequency Multiplier = 1+f/(100 kHz).
- 4.  $\theta$ ca (case-to-ambient thermal resistance) value is given in natural convection (0 m/s). For other air velocities v (m/s), use the total capacitor surface area A in square meters and the formula  $\theta$ ca = 1/[A(5+17(v+0.1)^{0.66}]

## Type 947C High Capacitance, High Current, DC Link Capacitors



#### Life Calculation and Capacitor Delection ? ocedure

Customer has selected a capacity and wants to know the expected lifetime

Customer needs to alre .dy k ow:

Ripple Curren 1 (A mc, Frequency f (Hz, Ambie ... Temperatule Ta (°C) Airf'uw velicity v (m/s) Appl. d UC voltage Va Vdc

1. Estimate ESR as 10 kHz ESR from data sheet plus 0.0002 / (2  $\pi$  f c)

2. Compute total thermal resistance  $\theta$  as  $\theta = \theta$  cc +  $\theta$ ca where  $\theta$ cc is core-to-case thermal resistance from the data sheet table (adjust  $\theta$ cc for frequency from multiplier table if frequency >10 kHz) and  $\theta$ ca is case-to-ambient thermal resistance calculated as  $\theta$ ca = 1/[A(5+17(v+0.1)^{0.66}] where A is the surface area of the capacitor in square meters and v is the airflow velocity in m/s.

- 3. Compute the core temperature T as T = Ta +I<sup>2</sup> x ESR x  $\theta$
- 4. Look up estimated lifetime from "Lifetime vs T & Va/Vr Chart"

5. If estimated lifetime is too low, choose a capacitor with higher voltage rating, higher capacitance (thus lower ESR), or consider using multiple capacitors in parallel to share the ripple current.

# Customer has a target lifetime and wants to select a capacitor

Customer needs to already know: Ripple Current I (Arms) Frequency f (Hz) Ambient Temperature Ta (°C) Airflow velocity v (m/s) Applied DC Voltage Va (VDC)

- 1. Select a rated voltage Vr > Va. Compute Va/Vr
- 2. Look up estimated lifetime from "Lifetime vs T & Va/Vr Chart"
- to ensure lifetime at Va and T > Ta is sufficient.
- 3. Select a candidate capacitor with rated voltage Vr.
- 4. Estimate the ESR of the selected capacitor as the 10 kHz
- ESR from data sheet plus 0.0002 / (2  $\pi$  f c )

5. Compute total thermal resistance  $\theta$  as  $\theta = \theta cc + \theta ca$  where  $\theta cc$  is core-to-case thermal resistance from the data sheet table.

- 6. Compute the core temperature T as T = Ta + I2 x ESR x  $\theta$
- 7. Look up estimated lifetime from "Lifetime vs T & Va/Vr Chart"

8. If estimated lifetime is too low, choose a capacitor with higher voltage rating, higher capacitance (thus lower ESR), or consider using multiple capacitors in parallel to share the ripple current.