
SLRS048A - MAY 1998 - REVISED APRIL 2000

- SN75LBC031 Meets Standard ISO/DIS 11898 (up to 500 k Baud)
- Driver Output Capability at 50 mA
- Wide Positive and Negative Input/output **Bus Voltage Range**
- **Bus Outputs Short-Circuit-Protected to Battery Voltage and Ground**
- **Thermal Shutdown**
- **Available in Q-Temp Automotive**
 - HighRel Automotive Applications
 - Configuration Control/Print Support
 - Qualification to Automotive Standards

description

The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both

TERMINAL FUNCTIONS

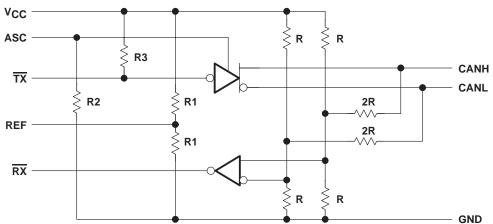
TERMINAL	DESCRIPTION					
TX	Transmitter input					
GND	Ground					
VCC	Supply voltage					
RX	Receiver output					
REF	Reference output					
CANL	Low side bus output driver					
CANH	High side bus output driver					
ASC	Adjustable slope control					

FUNCTION TABLE

TX	CANH	CANL	BUS STATE	RX
L	Н	L	Dominant	L
High or floating	Floating	Floating	Recessive	Н

transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160°C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to V_{CC}. The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.

The SN75LBC031 is characterized for operation from -40°C to 85°C. The SN65LBC031 is characterized for operation from -40°C to 125°C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40°C to 125°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLRS048A - MAY 1998 - REVISED APRIL 2000

logic diagram

SLRS048A - MAY 1998 - REVISED APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Logic supply voltage, V _{CC} (see Note 1)	7 V
Bus terminal voltage	
Input current at TX and ASC terminal, I ₁	±10 mA
Input voltage at TX and ASC terminal, V _I	2 × V _{CC}
Operating free-air temperature range, T _A : SN65LBC031, SN65LBC031Q	–40°C to125°C
SN75LBC031	–40°C to 85°C
Operating juncation range, T _J	–40°C to 150°C
Continuous total power dissipation at (or below) 25°C free-air temperature So	ee Dissipation Rating Table
Storage temperature range, T _{stq}	–65°C to 150°C
Case temperature for 10 sec T _C , D package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential bus voltage, are measured with respect to GND.

DISSIPATION RATING TABLE

$\begin{array}{cc} & & & T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C} \\ & & \mbox{\scriptsize POWER RATING} \end{array}$		OPERATING FACTOR ABOVE T _C = 25°C	T _C = 125°C POWER RATING
D	725 mW	5.8 mW/°C	145 mW

DISSIPATION DERATING CURVE

vs

FREE-AIR TEMPERATURE

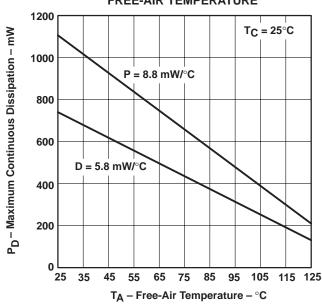


Figure 1

SLRS048A - MAY 1998 - REVISED APRIL 2000

recommended operating conditions

		MIN	NOM	MAX	UNIT
Logic supply voltage, V _{CC}	4.5	5	5.5	V	
Voltage at any bus terminal (separate	ly or common mode), V _I or V _{IC} (see Note 3)	-2		7	V
High-level input voltage, VIH	TX	2		VCC	V
Low-level input voltage, V _{IL}	TX	0		0.8	V
High level output current leve	Transmitter			-50	mA
High-level output current, IOH	Receiver			-400	μΑ
Low lovel output ourrent lov	Transmitter			50	A
Low-level output current, IOL	Receiver			1	mA
Operating free air temperature T.	SN75LBC031	-40		85	°C
Operating free-air temperature, T _A	SN65LBC031, SN65LBC031Q	-40		125	-0

NOTES: 2. All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

3. For bus voltages from -5 V to -2 V and 7 V to 20 V the receiver output is stable.

SYMBOL DEFINITION

DATA SHEET PARAMETER	DEFINITION
VO(CANHR)	CANH bus output voltage (recessive state)
VO(CANLR)	CANL bus output voltage (recessive state)
VO(CANHD)	CANH bus output voltage (dominant state)
VO(CANLD)	CANL bus output voltage (dominant state)
VO(DIFFR)	Bus differential output voltage (recessive state)
V _{O(DIFFD)}	Bus differential output voltage (dominant state)
V _I (ASC)	Adjustable slope control input voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(REF)	Reference source output voltage	I _{REF} = ±20 μA	0.45 V _{CC}		0.55 V _{CC}	V
R _{O(REF)}	Reference source output resistance		5		10	kΩ
ICC(REC)	Logic supply current, recessive state	See Figure 2, S1 closed		12	20	mA
ICC(DOM)	Logic supply current, dominant state	See Figure 2, ST Closed		55	80	IIIA

SLRS048A - MAY 1998 - REVISED APRIL 2000

transmitter electrical characteristics over recommended ranges of supply and operating free-air temperature (unless otherwise noted)

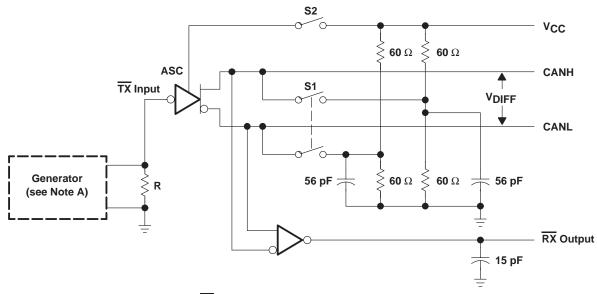
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(CANHR) VO(CANLR)	Output voltage (recessive state)	See Figure 2, S1 open	2	0.5V _{CC}	3	V
V _{O(DIFFR)}	Differential output voltage (recessive state)		-500	0	50	mV
VO(CANHD)	Output voltage (dominant state)		2.75	3.5	4.5	
VO(CANLD)	Output voltage (dominant state)	See Figure 2, S1 closed	0.5	1.5	2.25	V
VO(DIFFD)	Differential output voltage (dominant state)		1.5	2	3	
lu con o	High-level input current (TX)	V _{IH} = 2.4 V		-100	-185	^
I _{IH} (TX)	righ-lever input current (1%)	VIH = VCC			±2	μΑ
lu va ees	High-level input current (ASC)	V _{IH} = 2.4 V		100	165	μΑ
IH(ASC)	riigh-leverinput current (ASC)	V _{IH} = V _{CC}		200	340	μΑ
I _{IL(TX)}	Low-level input current (\overline{TX})	V _{IL} = 0.4 V		-180	-400	μΑ
IL(ASC)	Low-level input current (ASC)	V _{IL} = 0.4 V		15	25	μΑ
C _{I(TX)}	TX input capacitance			8		pF
I _{O(ssH)}	CANH short circuit output current	$V_{O(CANH)} = -2 \text{ V to } 20 \text{ V}$		-95	-200	mA
I _{O(ssL)}	CANL short circuit output current	$V_{O(CANL)} = 20 \text{ V to } -2 \text{ V}$		140	250	mA

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

transceiver dynamic characteristics over recommended operating free-air temperature range and V_{CC} = 5 V

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
	Loop time	See Figures 2 and 3, S1 closed,	VI(ASC) = 0 V or open circuit, S2 open			280	ns
^t (loop)	Loop time	See Figures 2 and 3, S1 closed,	VI(ASC) = V _{CC} , S2 closed			400	ns
CD (==)	Differential-output slew rate	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		35		V/μs
SR _(RD)	(recessive to dominant)	See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed	10			V/μs
CD	Differential-output slew rate (dominant to recessive)	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		10		V/μs
SR _(DR)		See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed		10		V/μs
t _d (RD)	Differential output delay time	San Figure 2	S1 closed		55		ns
td(DR)	Differential-output delay time	See Figure 2,	ST Closed		160		ns
tpd(RECRD)	Receiver propagation delay	See Figures 2 and 5			90		ns
tpd(RECDR)	time	See Figures 2 and 5			55		ns

NOTE 4: Receiver input pulse width should be >50 ns. Input pulses of <30 ns are suppressed.


SLRS048A - MAY 1998 - REVISED APRIL 2000

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIT(REC)	Differential input threshold voltage for recessive state	V _{IC} = -2 V to 7 V			500	mV
VIT(DOM)	Differential input threshold voltage for dominant state	VIC = -2 V 10 7 V	900			IIIV
V _{hys}	Recessive-dominant input hysteresis		100	180		mV
VOH(RX)	High-level output voltage	$V_{O(DIFF)} = 500 \text{ mV},$ $I_{OH} = -400 \mu\text{A}$	V _{CC} -0.5 V		VCC	V
V _{OL(RX)}	Low-level output voltage	V _{O(DIFF)} = 900 mV, I _{OL} = 1 mA	0		0.5	V
rI(REC)	CANH and CANL input resistance in recessive state	dc, no load	5		50	kΩ
rI(DIFF)	Differential CANH and CANL input resistance in recessive state	dc, no load	10		100	kΩ
Ci	CANH and CANL input capacitance			20		pF
C _{i(DHL)}	Differential CANH and CANL input capacitance			10	, and the second	pF

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

PARAMETER MEASUREMENT INFORMATION

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_f and $t_f = 5$ ns.

Figure 2. Test Circuit

PARAMETER MEASUREMENT INFORMATION

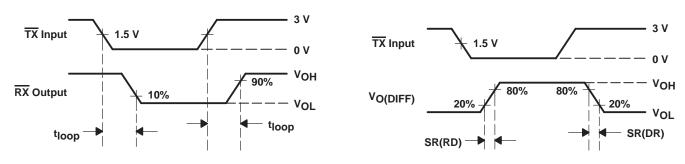
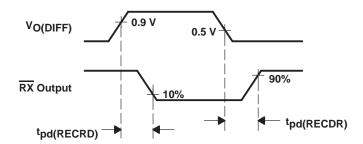



Figure 3. Loop Time

Figure 4. Slew Rate

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_{Γ} and $t_{f} = 5$ ns.

NOTE A: The input pulse is supplied as V_{DIFF} using CANH and CANL respectively by a generator having a t_r and $t_f = 5$ ns.

Figure 5. Receiver Delay Times

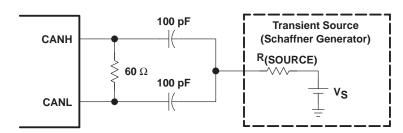


Figure 6. Transient Stress Capability Test Circuit

PARAMETER MEASUREMENT INFORMATION

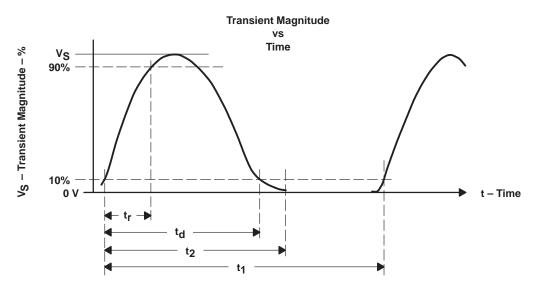


Figure 7. Transient Stress Capability Waveform

Table 1. Test Circuit Results According to DIN 40839

TEST PULSE	TRANSIENT MAGNITUDE VS	SOURCE IMPEDANCE RSOURCE	PULSE WIDTH t _d (see Note 5)	PULSE RISE TIME, t _r (see Note 6)	PULSE TIME, t ₂ (see Figure 7)	REPETITION PERIOD, t ₁ (see Figure 7)	NUMBER OF PULSES
1	–100 V	10 Ω	2 ms	1 μs	200 ms	5 s	5000
2	100 V	10 Ω	50 μs	1 μs	200 ms	5 s	5000
3a	−150 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
3b	100 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
5	60 V	1 Ω	400 ms	5 ms	_	_	1

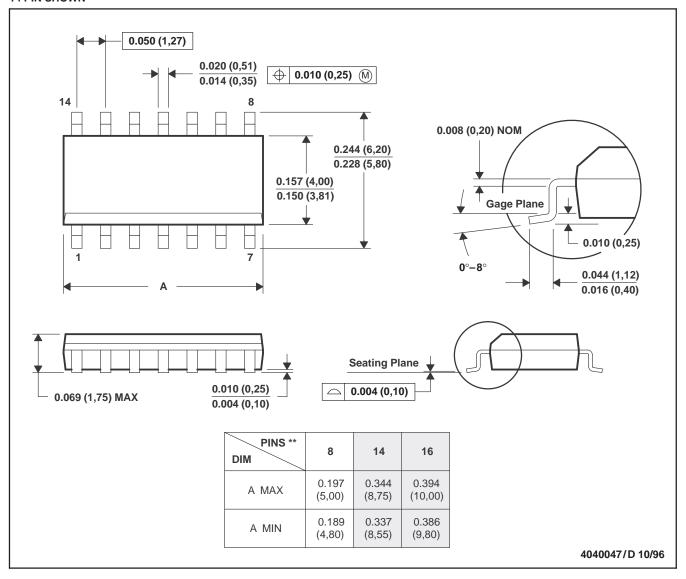
NOTES: 5. Measured from 10% on rising edge to 10% on falling edge

- 6. Measured from 10% to 90% of pulse
- 7. Pulse package for a period of 3600 s, 10 ms pulse time, 90 ms stop time

SLRS048A - MAY 1998 - REVISED APRIL 2000

APPLICATION INFORMATION 5 V 💳 100 nF 3 120 Ω \lesssim 10 k Ω 10 kΩ § 8 **VCC VCC** 8 ASC TL7705B **CANH** 7 SENSE SN75LBC031 RESIN RESET GND CANL REF **GND** c_{in} TX REF RX 120 Ω 5 0.1 μF4 **CAN Microcontroller**

Figure 8. Typical SN75LBC031 Application


SLRS048A - MAY 1998 - REVISED APRIL 2000

MECHANICAL DATA

D (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

i.com 21-Apr-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65LBC031D	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM
SN65LBC031DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LBC031DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65LBC031P	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
SN75LBC031D	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM
SN75LBC031DR	ACTIVE	SOIC	D	8	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM
SN75LBC031P	OBSOLETE	PDIP	Р	8	•	TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

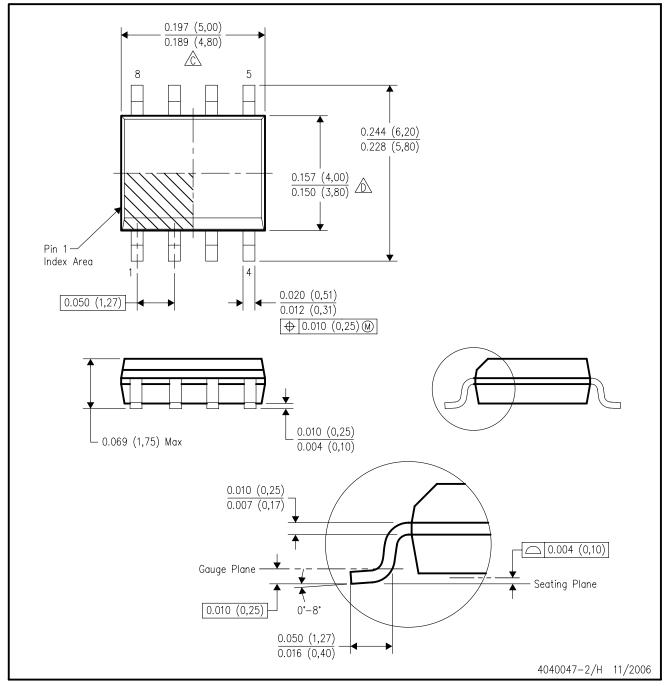
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

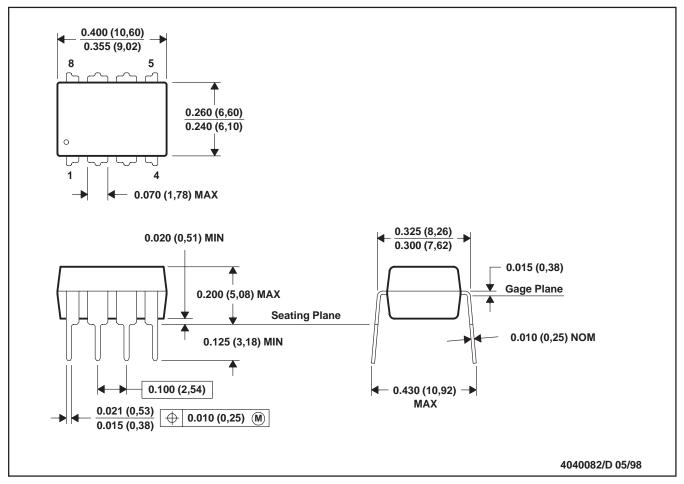

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated