Instruments

Using the bq241xx (bqSWITCHER ${ }^{\text {rm }}$)

User's Guide

EVM IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety measures typically found in the end product incorporating the goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may not meet the technical requirements of the directive.

Should this evaluation kit not meet the specifications indicated in the EVM User's Guide, the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE

 TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the EVM User's Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact the TI application engineer.

Persons handling the product must have electronics training and observe good laboratory practice standards.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

DYNAMIC WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 4.5 V to 16 V .
Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a Tl field representative.

During normal operation, some circuit components may have case temperatures greater than $50^{\circ} \mathrm{C}$. The EVM is designed to operate properly with certain components above $50^{\circ} \mathrm{C}$ as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

Using the bq241xx (bqSWITCHER ${ }^{\text {rm }}$)

Portable Power

Contents

1 Introduction 4
2 Test Summary 5
3 Schematic 6
4 Physical Layouts 8
5 List of Materials 11
6 References 15

1 Introduction

This user's guide describes the bq241xxEVM (bqSWITCHER) Evaluation Module. The EVM provides a convenient method for evaluating the performance of a charge management solution for portable applications using the bq241xx product family. A complete designed and tested charger is presented. The charger is designed to deliver up to 2.0 A of continuous output current. The charger is programmed from the factor to deliver 1.33 A of charging current. Follow the instructions in this user's guide that pertain to the specific bq241xxEVM to be evaluated (one-, two- or three-cell). Please refer to the bqSWITCHER data sheet (SLUS606) prior to evaluation for detailed information on the bqSWITCHER device.

1.1 Background

The bqSWITCHERTM series are highly integrated Li-Ion and Li-Pol switch-mode charge management devices targeted at a wide range of portable applications. The bqSWITCHER series offer integrated synchronous PWM Controller and PowerFETs, high-accuracy current and voltage regulation, charge conditioning, charge status, and charge termination, in a small thermally enhanced QFN package. The system-controlled version provides additional input for full charge management under system control.

The bqSWITCHER charges the battery in three phases: conditioning, constant current and constant voltage. Charge is terminated based on user-selectable minimum current level. A programmable charge timer provides a backup safety for charge termination. The bqSWITCHER automatically restarts the charge if the battery voltage falls below an internal threshold. The bqSWITCHER automatically enters sleep mode when V_{CC} supply is removed.

1.2 Performance Specification Summary

This section summarizes the performance specifications of the EVM. Table 1 gives the performance specifications of the EVM. The TS pin has been disabled, for easier charging evaluation, by fixing its voltage to a set value. See EVM schematic and data sheet for information on how to change R10 and R11 values to use with an external thermistor

Table 1. Performance Specification Summary ${ }^{(1)}$

SPECIFICATION		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input DC voltage, $\mathrm{V}_{1(\mathrm{DC})}$			$\mathrm{V}_{\text {REG }}+0.6$	5.0	16	V
Battery charge current(1), IO(CHG)				1.33	2.0(1)	A
Power dissipation	$\begin{array}{r} \text { bq24100 } \\ (1 \text { cell }) \\ \hline \end{array}$	$5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}, \mathrm{~V}_{\text {(BAT }}=4.2 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		0.6		W
	bq24103 bq24113 (1 cell)	$5 \mathrm{~V} \leq \mathrm{V}$ IN $\leq 16 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BAT})}=4.2 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		0.6		
	bq24103 bq24113 (2 cell)	$9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BAT})}=8.4 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		0.85		
	bq24105 bq24115 (1 cell)	$5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BAT}}=4.2 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		0.6		
	bq24105 bq24115 (2 cell)	$9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BAT})}=8.4 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		0.85		
	bq24105 bq24115 (3 cell)	$13.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}, \mathrm{~V}_{(\mathrm{BAT}}=12.6 \mathrm{~V}, \mathrm{IOUT}=1.33 \mathrm{~A}$		1.17		

2 Test Summary

This chapter covers the test setups and tests performed, in evaluating the EVM.

2.1 Equipment

- Power Source: Current limited $15-\mathrm{V}$ lab supply with its current limit set to 25% above the programmed charging current (1.7 A for setup from factory). This is basically a safety limit. The actual DC input current should be less than the charging current.
- Two Fluke 75: (optional) To measure input and output voltage and drop across current sense resistor.

2.2 Setup

The bq241xx EVM board requires a regulated supply approximately 0.3 V minimum above the regulated voltage of the battery pack (1-cell pack: 4.2 V ; 2-cell pack: 8.4 V ; 3 -cell pack: 12.6 V) to a maximum input voltage of $16 \mathrm{~V}_{\mathrm{DC}}$.
A one- to three-cell battery pack is needed for EVM evaluation. The EVM should be chosen and set up to charge the same numbers of cells as the battery pack to be evaluated. See Table 2.
Setup the EVM as shown in Table 2. Preset the input supply to the desired voltage, turn off supply and then connect supply to J1. Set the supply's current limit 25% above the programmed charging current. The test setup connections and jumper setting selections are configured for a stand-alone evaluation but can be changed to interface with external hardware such as a microcontroller. Refer to schematic and data sheet for additional functional information on other optional connections.

Table 2. I/O and Jumper Connections (Factory Jumper Selections are shown in BOLD):

ASSEMBLY		-001	-002	-003	-004	-005
U1	Device	bq24100	bq24105(1)	bq24113(2)	bq24115(1)	bq24103(2)
J1	DC+/DC-:Input voltage range (V)	5 to 16	$\mathrm{V}_{\text {REG }}+0.8$ to 16(1)	5 to 16	$\mathrm{V}_{\text {REG }}+0.8$ to 16(1)	5 to 16(2)
J2	BAT+/BAT-No. cell in series	1	1	1	1	1
	Output regulation voltage (V)	4.2	$4.2{ }^{(1)}$	$4.2{ }^{(2)}$	$4.2{ }^{(1)}$	$4.2{ }^{(2)}$
J5	$\overline{\mathrm{PG}}$	LED or EXT				
J6	STAT1	LED or EXT				
J7	STAT2	LED or EXT	LED or EXT	N/C no jumper	N/C no jumper	LED or EXT
J8	TTC or CMOD	TTC no jumper	TTC no jumper	CMOD jumper HI	CMOD jumper HI	TTC no jumper
J9	$\overline{\mathrm{CE}}$	$\overline{\mathrm{CE}}$ jumper LO	$\overline{\mathrm{CE}}$ jumper LO	$\overline{\mathrm{CE}}$ jumper LO	$\overline{\text { CE jumper LO }}$	$\overline{\mathrm{CE}}$ jumper LO
J10	Cells or FB	No jumper	No jumper	Cells jumper LO	No jumper	Cells jumper low

(1) R5 and R7 can be changed to regulate output between approximately 3.2 V to 15.5 V . Adjust the input voltage as required. Output set to operate at $4.2 \mathrm{~V}_{\mathrm{DC}}$ from the factory.
(2) To operate as a two cell version (8.4V), replace battery with a two-series cell pack, set J 10 to High and adjust the Input voltage between 9.2 V to 16 V .

2.3 Test Procedure

Setup the evaluation board as described above, by making the necessary I/O connections and jumper selections. Prior to test and evaluation, it is important to verify that the EVM selected is setup correctly for the battery pack to be charged (several evaluation modules have a CELLs option that can be programmed for two different size - number of series cells). It is highly recommended that the battery pack to be charged has internal proteciton as a safety backup.

1. Turn on the power supply, preset to the suggested value in Table 2, and approximately 1.7 A for the current limit setting.
2. The $\overline{P G}$ LED should turn on along with STAT1, if the battery is charging.
3. The bq241xx enters pre-conditioning mode if the battery is below the $\mathrm{V}_{(\mathrm{LOWV})}$ threshold. In this mode, the bq241xx pre-charges the battery with a low current programmed by the ISET2 pin. If the RSET1 and RSET2 resistors are the same value then the precharge is one tenth the fast charge current (l${ }_{\mathrm{PRE}} \mathrm{CHG}=1.33 \mathrm{~A} / 10$ $=133 \mathrm{~mA}$) until the battery voltage reaches the $\mathrm{V}_{(\mathrm{LOWV})}$ threshold or until the precharge timer expires. If the timer expires then the charge current is terminated and the bq241xx enters fault mode. STAT1 and STAT2 (if available) LEDs turns off when in fault mode. Note that there are several non-charging modes that share this status state. Toggling input power or battery replacement resets fault mode.
4. Once the battery voltage is above the $\mathrm{V}_{(\mathrm{LOWV})}$ threshold, the battery enters fast charge mode. This EVM is programmed for approximately 1.3 A of fast charging current. The $\overline{\mathrm{PG}}$ and STAT1 LEDs should be on.
5. Once the battery reaches voltage regulation (4.2 V) the current tapers down as the battery reaches its full capacity. The $\overline{\mathrm{PG}}$ and STAT1 LEDs should be on.
6. When the current reaches the taper termination threshold, set by the RSET2 resistor, the charge is terminated. The $\overline{P G}$ LED should still be on and the STAT1 LED should turn off and STAT2 LED turn on.
7. If the battery discharges down to the recharge threshold, the charger starts fast charging. The $\overline{P G} L E D$ should still be on and the STAT2 LED should turn off and STAT1 LED turn on.

An alternative method of testing the EVM is with a source meter, that can sink or source current. This can easily be adjusted to test each mode, in place of a battery.

3 Schematic

Figure 1 shows the schematic diagram for the EVM.

Figure 1. bq241xxEVM Top Layer

4 Physical Layouts

This chapter contains the board layout and assembly drawings for the EVM.

4.1 Board Layout

Figure 2 shows the top assembly of the EVM. Figure 3 shows the top silk screen. The bq24103 may also be evaluated on this evaluation board. Figure 4 shows the top layer. Figure 5 shows the bottom layer view.

Figure 2. bq241xxEVM Top Assembly

Figure 3. bq241xxEVM Top Silk Screen

Figure 4. bq241xx Top Layer

Figure 5. bq241xxEVM Top Asembly

5 List of Materials

Tables 3 through 7 list the components used in this design. With minor component adjustments this design could be modified to meet a wide range of applications.

Table 3. bq24100EVM-001 List of Materials

REFERENCE DESIGNATOR	QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
C1, C2, C4	3	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C9	0	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C3	0	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C5, C7, C8	3	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C6	1	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
D1	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D2	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D3	1	Diode, LED, red, $1.8 \mathrm{~V}, 20 \mathrm{~mA}, 20 \mathrm{mcd}$	603	Liteon	160-1181-1-ND
J1	1	Terminal block, 2-pin, 6 A, 3.5 mm	75525	OST	ED1514
J2, J3	2	Terminal block, 4-pin, 6 A, 3.5 mm	0.55×0.25	OST	ED1516
J4	1	Terminal block, 3-pin, 6 A, 3.5 mm	0.41×0.25	OST	ED1515
J5, J6, J8, J9	4	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J7	1	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J10	0	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
	5	Shunt, 100 mil, black	0.100	3M	929950-00
L1	1	Inductor, SMT, $10 \mu \mathrm{H}, 1.84 \mathrm{~A}, 49 \mathrm{~m} \Omega$	0.315×0.287	Sumida	CDRH74-100
R1	1	Resistor, chip, $1.5 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-1501-F
R10	1	Resistor, chip, $4.99 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-4991-F
R11, R13, R14	3	Resistor, chip, $10 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1002-F
R12	0	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-0000-F
R2, R3	2	Resistor, chip, $1.5 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-1501-F
R4	1	Resistor, chip, $0.1 \Omega, 1 / 2 \mathrm{~W}, 1 \%$	2010	Vishay	CRCW1210-0R10F
R5, R7	0	Resistor, chip, $200 \mathrm{k} \Omega$, 1/8-W, 1\%	805	Vishay	CRCW0805-2003-F
R6	1	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-00R0-F
R8, R9	2	Resistor, chip, $7.5 \mathrm{k} \Omega$, 1/16-W, 1\%	603	Vishay	CRCW0603-7501-F
U1	1	IC, advanced Li-Ion and Li-Pol charge management	RHL-20	TI	bq24100RHL
--	1	PCB, $2.0 \ln \times 1.9 \ln \times .031 \mathrm{ln}$		Any	HPA040

(1) These assemblies are ESD sensitive, ESD precautions shall be observed.
(2) These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
(3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.
(4) C9 can be installed by the customer if using long cables (inductive load)
${ }^{(5)}$ Place shunts as follows (Jumper pin orientation: pin 1: top (toward RD), pin 2: center, pin 3-bottom). Place shunts on J5, J6, J7-1/2 (LED); J9-2/3 (LOW); J8-2 (optional)

Table 4. bq24105EVM-002 List of Materials

REFERENCE DESIGNATOR	QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
C1, C2, C4	3	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C9	0	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C3	1	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C5, C7, C8	3	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C6	1	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
D1	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D2	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D3	1	Diode, LED, red, $1.8 \mathrm{~V}, 20 \mathrm{~mA}, 20 \mathrm{mcd}$	603	Liteon	160-1181-1-ND
J1	1	Terminal block, 2-pin, $6 \mathrm{~A}, 3.5 \mathrm{~mm}$	75525	OST	ED1514
J2, J3	2	Terminal block, 4-pin, 6 A, 3.5 mm	0.55×0.25	OST	ED1516
J4	1	Terminal block, 3-pin, 6 A, 3.5 mm	0.41×0.25	OST	ED1515
J5, J6, J8, J9	4	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J7	1	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J10	0	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
	5	Shunt, 100 mil, black	0.100	3M	929950-00
L1	1	Inductor, SMT, $10 \mu \mathrm{H}, 1.84 \mathrm{~A}, 49 \mathrm{~m} \Omega$	0.315×0.287	Sumida	CDRH74-100
R1	1	Resistor, chip, $1.5 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-1501-F
R10	1	Resistor, chip, $4.99 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-4991-F
R11, R13, R14	3	Resistor, chip, $10 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1002-F
R12	0	Resistor, chip, 0Ω, 1/16-W, 1\%	603	Vishay	CRCW0603-0000-F
R2, R3	2	Resistor, chip, $1.5 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1501-F
R4	1	Resistor, chip, 0.1Ω, $1 / 2 \mathrm{~W}, 1 \%$	2010	Vishay	CRCW1210-0R10F
R5, R7	2	Resistor, chip, $200 \mathrm{k} \Omega$, 1/8-W, 1\%	805	Vishay	CRCW0805-2003-F
R6	1	Resistor, chip, 0Ω, 1/16-W, 1\%	603	Vishay	CRCW0603-00R0-F
R8, R9	2	Resistor, chip, $7.5 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-7501-F
U1	1	IC, Advanced Li -lon and Li-Pol Charge Management	RHL-20	TI	bq24105RHL
--	1	PCB, $2.0 \mathrm{ln} \times 1.9 \mathrm{ln} \times 0.031 \mathrm{ln}$		Any	HPA040

(1) These assemblies are ESD sensitive, ESD precautions shall be observed.
(2) These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
(3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.
(4) C9 can be installed by the customer if using long cables (inductive load)
(5) Place shunts as follows (Jumper pin orientation: pin 1: top (toward RD), pin 2: center, pin 3-bottom). Place shunts on J5, J6, J7-1/2 (LED); J9-2/3 (LOW); J8-2 (optional)

Table 5. bq24113EVM-003 List of Materials

REFERENCE DESIGNATOR	QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
C1, C2, C4	3	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C9	0	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C3	0	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C5, C7, C8	3	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C6	0	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
D1	0	Diode, LED, green, $2.1 \mathrm{~V}, 20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D2	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D3	1	Diode, LED, red, 1.8 V, $20 \mathrm{~mA}, 20 \mathrm{mcd}$	603	Liteon	160-1181-1-ND
J1	1	Terminal block, 2-pin, $6 \mathrm{~A}, 3.5 \mathrm{~mm}$	75525	OST	ED1514
J2, J3	2	Terminal block, 4-pin, 6 A, 3.5 mm	0.55×0.25	OST	ED1516
J4	1	Terminal block, 3-pin, 6 A, 3.5 mm	0.41×0.25	OST	ED1515
J5, J6, J8, J9	4	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J7	0	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J10	1	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
	5	Shunt, 100 mil, black	0.100	3M	929950-00
L1	1	Inductor, SMT, $10 \mu \mathrm{H}, 1.84 \mathrm{~A}, 49 \mathrm{~m} \Omega$	0.315×0.287	Sumida	CDRH74-100
R1	0	Resistor, chip, $1.5 \mathrm{k} \Omega$, $1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1501-F
R10	1	Resistor, chip, $4.99 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-4991-F
R11, R13, R14	3	Resistor, chip, $10 \mathrm{k} \Omega$, 1/16-W, 1\%	603	Vishay	CRCW0603-1002-F
R12	1	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-0000-F
R2, R3	2	Resistor, chip, $1.5 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1501-F
R4	1	Resistor, chip, $0.1 \Omega, 1 / 2 \mathrm{~W}, 1 \%$	2010	Vishay	CRCW1210-0R10F
R5, R7	0	Resistor, chip, $200 \mathrm{k} \Omega, 1 / 8-\mathrm{W}, 1 \%$	805	Vishay	CRCW0805-2003-F
R6	1	Resistor, chip, 0Ω, 1/16-W, 1\%	603	Vishay	CRCW0603-00R0-F
R8, R9	2	Resistor, chip, $7.5 \mathrm{k} \Omega$, 1/16-W, 1\%	603	Vishay	CRCW0603-7501-F
U1	1	IC, Advanced Li-Ion and Li-Pol Charge Management	RHL-20	TI	bq24113RHL
--	1	PCB, $2.0 \mathrm{ln} \times 1.9 \mathrm{ln} \times 0.031 \mathrm{ln}$		Any	HPA040

(1) These assemblies are ESD sensitive, ESD precautions shall be observed.
(2) These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
(3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.
(4) C9 can be installed by the customer if using long cables (inductive load)
(5) Place shunts as follows (Jumper pin orientation: pin 1: top (toward RD), pin 2: center, pin 3-bottom). Place shunts on J8-1/2 (Hi), J5 \& J6-1/2 (LED), J9-2/3 (LOW). Place shunts on J10-2/3 (LOW)

Table 6. bq24115EVM-004 List of Materials

REFERENCE DESIGNATOR	QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
C1, C2, C4	3	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C9	0	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C3	1	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C5, C7, C8	3	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C6	0	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
D1	0	Diode, LED, green, $2.1 \mathrm{~V}, 20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D2	1	Diode, LED, green, $2.1 \mathrm{~V}, 20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D3	1	Diode, LED, red, $1.8 \mathrm{~V}, 20 \mathrm{~mA}, 20 \mathrm{mcd}$	603	Liteon	160-1181-1-ND
J1	1	Terminal block, 2-pin, $6 \mathrm{~A}, 3.5 \mathrm{~mm}$	75525	OST	ED1514
J2, J3	2	Terminal block, 4-pin, 6 A, 3.5 mm	0.55×0.25	OST	ED1516
J4	1	Terminal block, 3-pin, 6 A, 3.5 mm	0.41×0.25	OST	ED1515
J5, J6, J8, J9	4	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J7	0	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J10	0	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
	4	Shunt, 100 mil, black	0.100	3M	929950-00
L1	1	Inductor, SMT, $10 \mu \mathrm{H}, 1.84 \mathrm{~A}, 49 \mathrm{~m} \Omega$	0.315×0.287	Sumida	CDRH74-100
R1	0	Resistor, chip, $1.5 \mathrm{k} \Omega$, 1/16-W, 1\%	603	Vishay	CRCW0603-1501-F
R10	1	Resistor, chip, $4.99 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-4991-F
R11, R13, R14	3	Resistor, chip, $10 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1002-F
R12	0	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-0000-F
R2, R3	2	Resistor, chip, $1.5 \mathrm{k} \Omega$, 1/16-W, 1%	603	Vishay	CRCW0603-1501-F
R4	1	Resistor, chip, $0.1 \Omega, 1 / 2 \mathrm{~W}, 1 \%$	2010	Vishay	CRCW1210-0R10F
R5, R7	2	Resistor, chip, $200 \mathrm{k} \Omega$, 1/8-W, 1\%	805	Vishay	CRCW0805-2003-F
R6	1	Resistor, chip, 0Ω, 1/16-W, 1\%	603	Vishay	CRCW0603-00R0-F
R8, R9	2	Resistor, chip, $7.5 \mathrm{k} \Omega$, 1/16-W, 1\%	603	Vishay	CRCW0603-7501-F
U1	1	IC, Advanced Li-lon and Li-Pol Charge Management	RHL-20	TI	bq24115RHL
--	1	PCB, $2.0 \mathrm{ln} \times 1.9 \mathrm{ln} \times 0.031 \mathrm{ln}$		Any	HPA040

(1) These assemblies are ESD sensitive, ESD precautions shall be observed.
(2) These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
(3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.
(4) C9 can be installed by the customer if using long cables (inductive load)
(5) Place shunts as follows (Jumper pin orientation: pin 1: top (toward RD), pin 2: center, pin 3-bottom). Place shunts on J8-1/2 (Hi), J5 \& J6-1/2 (LED), J9-2/3 (LOW)

Table 7. bq24103EVM-005 List of Materials

REFERENCE DESIGNATOR	QTY	DESCRIPTION	SIZE	MFR	PART NUMBER
C1, C2, C4	3	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C9	0	Capacitor, ceramic, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}, 20 \%$	1206	Panasonic	ECJ-3YB1E106M
C3	0	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C5, C7, C8	3	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
C6	1	Capacitor, ceramic, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{X7R}, 10 \%$	603	Panasonic	ECJ-1VB1C104K
D1	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D2	1	Diode, LED, green, 2.1 V, $20 \mathrm{~mA}, 6 \mathrm{mcd}$	603	Liteon	160-1183-1-ND
D3	1	Diode, LED, red, $1.8 \mathrm{~V}, 20 \mathrm{~mA}, 20 \mathrm{mcd}$	603	Liteon	160-1181-1-ND
J1	1	Terminal block, 2-pin, 6 A, 3.5 mm	75525	OST	ED1514
J2, J3	2	Terminal block, 4-pin, 6 A, 3.5 mm	0.55×0.25	OST	ED1516
J4	1	Terminal block, 3-pin, 6 A, 3.5 mm	0.41×0.25	OST	ED1515
J5, J6, J8, J9	4	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J7	1	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
J10	1	Header, 3-pin, 100 mil spacing, (36-pin strip)	34100	Sullins	PTC36SAAN
	6	Shunt, 100 mil, black	0.100	3M	929950-00
L1	1	Inductor, SMT, $10 \mu \mathrm{H}, 1.84 \mathrm{~A}, 49 \mathrm{~m} \Omega$	0.315×0.287	Sumida	CDRH74-100
R1	1	Resistor, chip, $1.5 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1501-F
R10	1	Resistor, chip, $4.99 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-4991-F
R11, R13, R14	3	Resistor, chip, $10 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1002-F
R12	1	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-0000-F
R2, R3	2	Resistor, chip, $1.5 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-1501-F
R4	1	Resistor, chip, $0.1 \Omega, 1 / 2 \mathrm{~W}, 1 \%$	2010	Vishay	CRCW1210-0R10F
R5, R7	0	Resistor, chip, $200 \mathrm{k} \Omega, 1 / 8-\mathrm{W}, 1 \%$	805	Vishay	CRCW0805-2003-F
R6	1	Resistor, chip, $0 \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-00R0-F
R8, R9	2	Resistor, chip, $7.5 \mathrm{k} \Omega, 1 / 16-\mathrm{W}, 1 \%$	603	Vishay	CRCW0603-7501-F
U1	1	IC, Advanced Li-Ion and Li-Pol Charge Management	RHL-20	TI	bq24103RHL
--	1	PCB, $2.0 \mathrm{ln} \times 1.9 \mathrm{ln} \times 0.031 \mathrm{ln}$		Any	HPA040

(1) These assemblies are ESD sensitive, ESD precautions shall be observed.
(2) These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.
(3) These assemblies must comply with workmanship standards IPC-A-610 Class 2.
(4) C9 can be installed by the customer if using long cables (inductive load)
(5) Place shunts as follows (Jumper pin orientation: pin 1: top (toward RD), pin 2: center, pin 3-bottom). Place shunts on J5, J6, J7-1/2 (LED); J9-2/3 (LOW); J8-2 (optional). Place shunts on J10-2/3 (LOW)

6 References

1. bq241xx Synchronous Switchmode Li-Ion and Li-Pol Charge Management IC With Integrated PowerFETs (bqSWITCHER™) datasheet (SLUS606)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

