TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO-IC

TLP106

Intelligent Power Module Signal Isolation Industrial Inverters Motor Drive

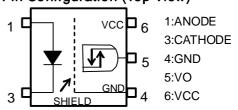
The Toshiba TLP106 consists of a GaA ℓ As light-emitting diode and an integrated high-gain, high-speed photo-detector. The TLP106 is suitable for isolating input control signals isolation to intelligent power modules. This unit is a 6-pin MFSOP.

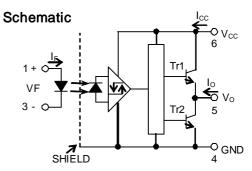
The detector has a totem pole output stage to provide source drive and sink drive and features a built-in Schmitt trigger.

The detector IC has an internal shield that provides a guaranteed common-mode transient immunity of 10 kV/ $\mu\,s.$

The TLP106 is of a buffer logic type. An inverter logic version, the TLP102, is also available.

- Buffer logic type (totem pole output)
- Guaranteed performance over temperature : -40~85°C
- Power supply voltage: -0.5~20 V
- Input current: IFLH = 3 mA (Max.)
- Switching Time (tpLH/tpHL): 400 ns (Max.)
- Common-mode transient immunity : 10 kV/μs
- Isolation voltage: 3750 Vrms


Unit in mm 6 5 4 0 7.0 ± 0.4 11.4C2 TOSHIBA 11-4C2


Weight: 0.09 g(typ.)

Truth Table

	Input	LED	Tr1	Tr2	Output	
	Н	ON	ON	OFF	Н	
Γ	L	OFF	OFF	ON	L	

Pin Configuration (Top View)

 $0.1\,\mu F$ bypass capacitor must be connected between pins 6 and 4

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current, ON	IF (ON)	5	1	10	mA
Input Voltage, OFF	VF (OFF)	0	_	0.8	V
Supply Voltage	VCC	4.5	_	20	٧
Operating Temperature	Topr	-40		85	°C

Maximum Ratings (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT	
	Forward Current	IF	20	mA	
	Peak Transient Forward Current (Note 1)		1	Α	
	Reverse Voltage	VR	5	V	
	Output Current 1 (Ta ≤ 25°C)	IO1	IO1 15/-15		
70R	Output Current 2 (Ta = 85°C)	102	4.5/-4.5	mA	
DETECTOR	Peak Output Current	IOP	20/-20	mA	
	Output Voltage Supply Voltage		-0.5~20	V	
			-0.5~20	V	
Oper	ating Temperature Range	Topr	-40~85	°C	
Stora	ge Temperature Range	Tstg	-55~125	°C	
Lead	Solder Temperature (10 s)	Tsol	260	°C	
	tion Voltage .C, 1 min., R.H. ≤60%,Ta = 25°C) (Note2)	BVs	3750	Vrms	

Note 1: Pulse width PW ≤ 10 us, 500 pps.

Note 2: Product considered a two-terminal device: pins 1 and 3 shorted together and pins 4, 5 and 6 shorted together.

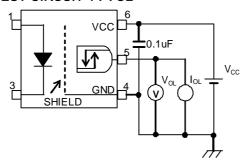
Electrical Characteristics (Unless otherwise specified, Ta = -40 to 85°C, VCC = 4.5~20 V.)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION		MIN.	TYP.	MAX.	UNIT	
Input Forward Voltage	VF	_	IF = 5 mA ,T a = 25°C		_	1.5	1.7	V	
Temperature Coefficient of Forward Voltage	ΔVF/ΔΤα	_	IF = 5 mA		_	-2.0	_	mV/°C	
Input Reverse Current	IR	_	VR = 5 V, 1	ā =	25°C		_	10	μA
Input Capacitance	CT	_	V = 0, f = 1	МН	z, Ta = 25°C	_	30	_	pF
Logic LOW Output Voltage	VOL	1	IOL = 3.5 mA, VF = 0.8 V		_	0.1	0.35	V	
L	\/O.L.	_	IOH =-3.5 ı	πA,	VCC = 5 V	2.4	3.1	_	
Logic HIGH Output Voltage	VOH	2	IF = 5 mA		VCC = 20 V	17.4	18.1	_	V
Laria LOW Quark Quark	ICCL	3	VF = 0 V		C = 20 V, = -40~85°C	_	4.0	6.0	
Logic LOW Supply Current					C = 5 V, = 25°C	_	3.6	4.5	mA
	ICCH		IF = 5 mA	1	C = 20 V, =-40~85°C	_	3.1	6.0	
Logic HIGH Supply Current		4			C = 5 V, = 25°C	_	2.8	4.5	mA
Logic LOW Short Circuit Output Current	IOSL	5	VF = 0 V VCC = VO = 20 V		7	37	_	mA	
Logic HIGH Short Circuit Output Current	IOSH	6	IF = 5 mA , VO = GND VCC = 20 V		-7	-40	_	mA	
Input Current Logic HIGH Output	IFLH	_	IO = -3.5 mA, VO > 2.4 V		_	0.3	3	mA	
Input Voltage Logic LOW Output	VFHL	_	IO = 3.5 mA, VO < 0.4 V		0.8	_	_	V	
Input Current Hysteresis	IHYS	_	VCC = 5 V		_	0.05	_	mA	

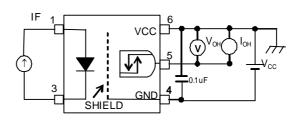
^{*}All typical values are at Ta = 25°C.

Isolation Characteristics (Ta = 25°C)

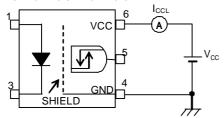
CHARACTERISTIC	SYMBOL	TEST CIRCUIT	MIN.	TYP.	MAX.	UNIT
Capacitance Input to Output	Cs	V = 0, $f = 1$ MHz (Note 2)	_	0.8	-	pF
Isolation Resistance R _S		R.H. ≤ 60%, V _S = 500 V (Note 2)	1×10 ¹²	10 ¹⁴	1	Ω
		AC, 1 minute	3750	_	1	V _{rms}
Isolation Voltage	BVS	AC, 1 second, in oil	_	10000	1	Vdc
		DC, 1 minute, in oil	_	10000	_	vuc

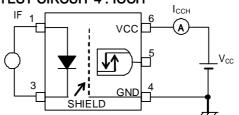

3 2005-04-22

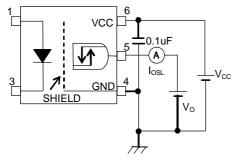
Switching Characteristics (Unless otherwise specified, Ta = -40 to 85°C, VCC = 4.5~20 V.)

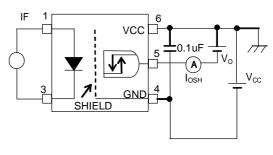

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay Time to Logic HIGH Output	tpLH		IF = 0→5mA, CL = 100 pF VCC = 20 V	50	250	400	ns
Propagation Delay Time to Logic LOW Output	tpHL	_	IF = 5→0 mA, CL = 100 pF VCC = 20 V	50	260	400	ns
Switching Time Dispersion between ON and OFF	tpHL- tpLH	7	CL = 100 PF			350	ns
Output Rise Time	tr		IF = 0→5 mA, VCC = 20 V	_	175	_	ns
Output Fall Time	tf		IF = 5→0 mA, VCC = 20 V	_	95	_	ns
Propagation Delay Time to Logic HIGH Output	tpLH		IF = 0→5 mA	50	_	400	ns
Propagation Delay Time to Logic LOW Output	tpHL	8	IF = 5→0 mA	50	ı	400	ns
Common-Mode Transient Immunity at HIGH Level Output	СМН		VCM = 1000 Vp-p, IF = 5 mA, VCC = 20 V,Ta = 25°C	-10000	_	_	V/us
Common-Mode Transient Immunity at LOW Level Output	CML	9	VCM = 1000 Vp-p, IF = 0 mA, VCC = 20 V,Ta = 25°C	10000	_	_	V/us

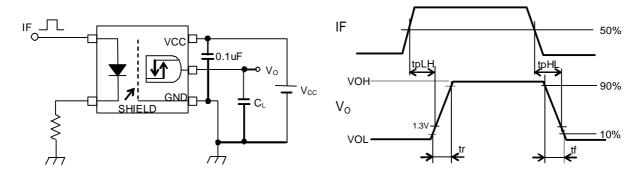
^{*}All typical values are at Ta = 25°C.

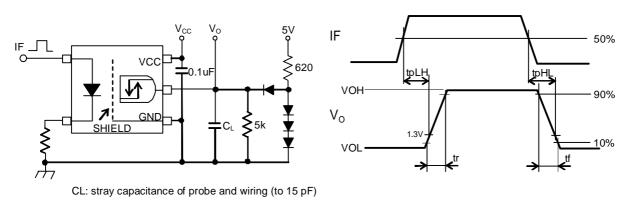

TEST CIRCUIT 1: VOL

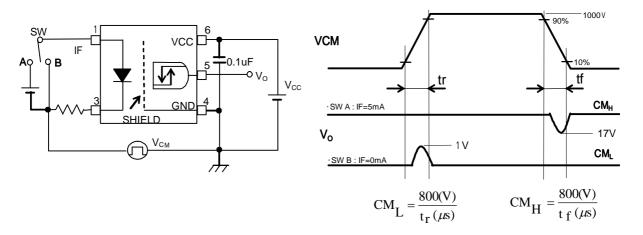

TEST CIRCUIT 2: VOH




TEST CIRCUIT 4: ICCH


TEST CIRCUIT 5: IOSL


TEST CIRCUIT 6: IOSH


TEST CIRCUIT 7: Switching Time Test Circuit

TEST CIRCUIT 8: Switching Time Test Circuit

TEST CIRCUIT 9: Common-Mode Transient Immunity Test Circuit

RESTRICTIONS ON PRODUCT USE

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in
 general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility
 of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire
 system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life,
 bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.