

General Description

The MAX9617-MAX9620 are low-power, zero-drift operational amplifiers available in space-saving SC70 packages. They are designed for use in portable consumer, medical, and industrial applications.
The MAX9617-MAX9620 feature rail-to-rail CMOS inputs and outputs, a 1.5 MHz GBW at just $59 \mu \mathrm{~A}$ supply current and $10 \mu \mathrm{~V}$ (max) zero-drift input offset voltage over time and temperature. The zero-drift feature reduces the high 1/f noise typically found in CMOS input operational amplifiers, making it useful for a wide variety of low-frequency measurement applications.
The MAX9617 and MAX9619 are available in a spacesaving, $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 6-pin SC70 package. The MAX9619 features a power-saving shutdown mode. The MAX9618 is available in a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 8-pin SC70 package. The MAX9620 is available in a $2 \mathrm{~mm} \times 2 \mathrm{~mm}$, 5 -pin SC70 package. All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive operating temperature range.

Applications
Sensor Interfaces
Loop-Powered Systems
Portable Medical Devices
Battery-Powered Devices
Cardiac Monitors

- Low 59رA Quiescent Current
- Very-Low 10ヶV (max) Input Offset Voltage
- Dual Version Available in an 8-Pin SC70 Package
- Low Input Noise
$42 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz
$0.42 \mu \mathrm{VP}-\mathrm{P}$ from 0.1 Hz to 10 Hz
- Rail-to-Rail Inputs and Outputs
- 1.5MHz GBW
- Ultra-Low 10pA Input Bias Current
- Single 1.8 V to 5.5 V Supply Voltage Range
- Unity-Gain Stable
- Power-Saving Shutdown Mode (MAX9619)
- Available in Tiny 5-Pin SC70 (MAX9620), 6-Pin SC70 (MAX9617/MAX9619), and 8-Pin SC70 (MAX9618) Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9617AXT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SC 70
MAX9618AXA +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SC 70
MAX9619AXT +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SC 70
MAX9620AXK +	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SC 70

+Denotes a lead(Pb)-free/RoHS-compliant package.

Functional Diagrams

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

ABSOLUTE MAXIMUM RATINGS

IN+, IN-, SHDN, (VDD to GND)
-0.3 V to +6 V
OUT to GND ... - 0.3 V to (VDD +0.3 V)
Short-Circuit Duration to Either Supply Rail,
OUT, OUTA, OUTB \qquad10s

Continuous Input Current (any pins)............................... $\pm 20 \mathrm{~mA}$
Continuos Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
5-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad

6-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).......... 245.4 mW
8-Pin SC70 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots \ldots \ldots \ldots . . .245 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}+=\mathrm{V} I \mathrm{~N}-=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{RL}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP MAX	UNITS
POWER SUPPLY						
Supply Voltage Range	VDD	Guaranteed by PSRR, $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$		1.6	5.5	
		Guaranteed by PSRR, $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$		1.8	5.5	V
Supply Current (per Amplifier)	IDD	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$59 \quad 78$	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			111	
Power-Supply Rejection Ratio (Note 2)	PSRR	$\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$ to 5.5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	119	135	dB
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	107		
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{V}_{\text {DD }}=1.6 \mathrm{~V}$ to 5.5 V		116	135	
Power-Up Time	ton	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$ to 3 V step, $\mathrm{AV}=1 \mathrm{~V} / \mathrm{V}$			20	$\mu \mathrm{s}$
Shutdown Supply Current	ISHDN	MAX9619 only			300	nA
Turn-On Time from Shutdown (MAX9619)	tosD	V DD $=3.3 \mathrm{~V}, \mathrm{~V} \overline{\mathrm{SHDN}}=0 \mathrm{~V}$ to 3.3V step			50	$\mu \mathrm{s}$
DC SPECIFICATIONS						
Input Offset Voltage (Note 2)	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.810	$\mu \mathrm{V}$
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			25	
Input Offset Voltage Drift (Note 2)	$\Delta \mathrm{VOS}$				5120	$\mathrm{nV} / \mathrm{O}^{\text {c }}$ PA
Input Bias Current (Note 2)	IB	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			3180	pA
		$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			95	
		$-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+125^{\circ} \mathrm{C}$		580		
Input Offset Current	IOS				5	pA
Input Common-Mode Range	VCM	Guaranteed by CMRR test	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.1	VDD +0.1	V
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-0.1	VDD +0.05	
Common-Mode Rejection Ratio (Note 2)	CMRR	$-0.1 \mathrm{~V} \leq \mathrm{VCM} \leq \mathrm{VDD}+0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		122	135	dB
		$\begin{aligned} & -0.1 \mathrm{~V} \leq \mathrm{V}_{C M} \leq V_{D D}+0.05 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \end{aligned}$		116		
Open-Loop Gain (Note 2)	AVOL	$\begin{aligned} & 20 \mathrm{mV} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{DD}}-20 \mathrm{mV}, \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V_{D D} / 2 \end{aligned}$		120	138	dB
		$\begin{aligned} & 150 \mathrm{mV} \leq \mathrm{VOUT} \leq \mathrm{V}_{\mathrm{DD}}-150 \mathrm{mV}, \\ & R_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$		123	160	

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{G N D}=0 \mathrm{~V}, \mathrm{~V}_{I N+}=\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$ to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Input Resistance	RIN	Differential		50		$\mathrm{M} \Omega$
		Common mode		200		
Output-Voltage Swing	VOH	VDD - Vout	RL = 100k Ω to $\mathrm{V}_{\mathrm{DD}} / 2$		12	mV
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD}} / 2$		22	
			$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $\mathrm{V}_{\mathrm{DD}} / 2$	50		
	VoL	Vout	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD}} / 2$		11	
			$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD}} / 2$		18	
			$R \mathrm{~L}=600 \Omega$ to $\mathrm{V}_{\mathrm{DD}} / 2$	50		
Short-Circuit Current	ISC			150		mA
AC SPECIFICATIONS						
Gain-Bandwidth Product	GBWP			1.5		MHz
Slew Rate	SR	$\mathrm{OV} \leq$ VOUT $\leq 2 \mathrm{~V}$		0.7		V/us
Input Voltage-Noise Density	en	$f=1 \mathrm{kHz}$		42		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Voltage Noise		$0.1 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{~Hz}$		0.42		$\mu \mathrm{VP}$-P
Input Current-Noise Density	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$		100		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
Phase Margin		$C \mathrm{~L}=20 \mathrm{pF}$		60		Degrees
Capacitive Loading	CL	No sustained oscillation, $\mathrm{Av}=1 \mathrm{~V} / \mathrm{V}$		400		pF
Crosstalk		$\mathrm{f}=10 \mathrm{kHz}$ (MAX9618)		-100		dB
LOGIC INPUT (MAX9619)						
Shutdown Input Low	VIL				0.5	V
Shutdown Input High	V_{IH}			1.3		V
Shutdown Input Leakage Current	IILIIIH			1	100	nA

Note 1: Specifications are 100% tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (exceptions noted). All temperature limits are guaranteed by design. Note 2: Guaranteed by design.
($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, outputs have $\mathrm{RL}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}$, outputs have $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

INPUT OFFSET VOLTAGE vs. TEMPERATURE

COMMON-MODE REJECTION RATIO vs. TEMPERATURE

SUPPLY CURRENT
vs. TEMPERATURE

INPUT BIAS CURRENT
vs. INPUT COMMON MODE

POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

INPUT OFFSET VOLTAGE
vs. INPUT COMMON MODE

COMMON-MODE REJECTION RATIO vs. FREQUENCY

OUTPUT-VOLTAGE SWING HIGH vs. TEMPERATURE

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Typical Operating Characteristics (continued)

$\left(V_{D D}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{GND}}=0 \mathrm{~V}\right.$, outputs have $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{DD}} / 2 . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Pin Configurations
TOP VIEW

Pin Description

PIN				NAME	
MAX9617	MAX9618	MAX9619	MAX9620		
1	-	1	1	IN+	Positive Input
2	4	2	2	GND	Ground
3	-	3	3	IN-	Negative Input
4	-	4	4	OUT	Output
5,6	8	6	5	VDD	Positive Supply Voltage. Bypass to GND with a 0.14F capacitor.
-	-	5	-	SHDN	Shutdown. Pull shutdown low to activate shutdown mode.
-	1	-	-	OUTA	Channel A Output
-	2	-	-	INA-	Channel A Negative Input
-	3	-	-	INA+	Channel A Positive Input
-	5	-	-	INB+	Channel B Positive Input
-	6	-	-	INB-	Channel B Negative Input
-	7	-	-	OUTB	Channel B Output

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Detailed Description

The MAX9617-MAX9620 are precision, low-power op amps ideal for signal processing applications. The MAX9617, MAX9619, and MAX9620 are single-channel devices. The MAX9618 is a dual-channel device. These devices use an innovative autozero technique that allows precision and low noise with a minimum amount of power. The low input offset voltage, CMOS inputs, and the absence of $1 / f$ noise allows for optimization of active filter designs.
The MAX9617-MAX9620 achieve rail-to-rail performance at the input through the use of a low-noise charge pump. This ensures a glitch-free, common-mode input voltage range extending from the negative supply rail up to the positive supply rail, eliminating crossover distortion common to traditional n-channel/p-channel CMOS pair inputs, reducing harmonic distortion at the output.
The MAX9619 features a shutdown mode that greatly reduces quiescent current when the device is not operational.

Autozero

The MAX9617-MAX9620 feature an autozero circuit that allows the device to achieve less than $10 \mu \mathrm{~V}$ (max) of input offset voltage and eliminates the 1/f noise.

Internal Charge Pump

An internal charge pump provides an internal supply typically 1 V beyond the upper rail. This internal rail allows the MAX9617-MAX9620 to achieve true rail-to-rail inputs and outputs, while providing excellent common-mode rejection, power-supply rejection ratios, and gain linearity.
The charge pump requires no external components, and in most applications is entirely transparent to the user. The operating frequency is well beyond the unity-gain
frequency of the amplifier, avoiding aliasing or other signal integrity issues in sensitive applications.

Shutdown Operation

The MAX9619 features an active-low shutdown mode that lowers the quiescent current to less than 300nA. In shutdown mode, the inputs and output are high impedance. This allows multiple devices to be multiplexed onto a single line without the use of external buffers. Pull $\overline{\text { SHDN }}$ high for normal operation.
The shutdown high (VIH) and low (VIL) threshold voltages are designed for ease of integration with digital controls like microcontroller outputs. These thresholds are independent of supply, eliminating the need for external pulldown circuitry.

Applications Information

The MAX9617-MAX9620 low-power, low-noise, and precision operational amplifiers are designed for applications in the portable medical, such as ECG and pulse oximetry, portable consumer, and industrial markets.
The MAX9617-MAX9620 are also ideal for loop-powered systems that interface with pressure sensors or strain gauges.

Capacitive-Load Stability
Driving large capacitive loads can cause instability in many op amps. The MAX9617-MAX9620 are stable with capacitive loads up to 400pF. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output. The graph in the Typical Operating Characteristics gives the stable operation region for capacitive load versus isolation resistors.

Figure 1. Typical Application Circuit: Sallen-Key Active Lowpass Filter

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Power Supplies and Layout

The MAX9617-MAX9620 operate either with a single supply from +1.6 V to +5.5 V with respect to ground or with dual supplies from $\pm 0.8 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$. When used with dual supplies, bypass both supplies with their own $0.1 \mu \mathrm{~F}$ capacitor to ground. When used with a single supply, bypass $V_{D D}$ with a $0.1 \mu \mathrm{~F}$ capacitor to ground.

Careful layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Chip Information
PROCESS: BiCMOS

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$5 \mathrm{SC70}$	$\mathrm{X} 5+1$	$\underline{\mathbf{2 1 - 0 0 7 6}}$	$\underline{\mathbf{9 0 - 0 1 8 8}}$
6 SC 70	$\mathrm{X} 6 \mathrm{SN}+1$	$\underline{\mathbf{2 1 - 0 0 7 7}}$	$\underline{90-0189}$
8 SC 70	$\mathrm{X} 8 \mathrm{C}+1$	$\underline{\mathbf{2 1 - 0 4 6 0}}$	$\underline{90-0348}$

PIN 1 DIT

CDMMDN DIMENSIDNS			
SYMBDL	MIN	NLM	MAX
A	0.80	0.95	1.10
A1	0.00	0.07	0.10
AD	0.80	0.90	1.00
b	0.15	0.22	0.30
C	0.10	0.14	0.18
D	1.80	2.00	2.20
e	0.65 BSC.		
E	1.15	1.25	1.35
HE	1.80	2.20	2.40
L	0.26	0.34	0.46
L1	0.425 TYP.$$		
Q1	0.10	0.25	0.40

TIP VIEW
END VIEW

SIDE VIEW
Nates:

1. ALL DIMENSIQNS ARE IN MILLIMETERS UNLESS ITHERWISE SPECIFIED,

DIMENSILNS ARE INCLUSIVE OF PLATING.
3. DIMENSIDNS ARE EXCLUSIVE DF MDLD FLASH \& METAL BURR.
4. CDPLANARITY: 4 MILS. MAX.

S foti length measured at intercept paint between datum "a" and lead surface

- MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

7. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ± 0.05.
8. CDMPLY TO JEITA SC-88A EXCEPT FIR DIMENSION "L". ALL DIMENSIINS CIMPLY TD JEDEC ML-203
9. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC \# 10-0131.
10. ALL DIMENSIDNS APPLY TI BDTH LEADED (-) AND LEAD FREE (+) PACKAGE CIDES.
11. PKG CODE: X5-1

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

NDTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIINS ARE INCLUSIVE $\square F$ PLATING
3. DIMENSIDNS ARE EXCLUSIVE DF MILD FLASH \& METAL BURR.
4. CDPLANARITY 4 MILS. MAX.
5. FIGT LENGTH MEASURED AT intercept paint between datum "a' and lead surface,
6. MARKING IS FIR PACKAGE DRIENTATIUN REFERENCE ONLY.
7. LEAD CENTERLINES TO BE AT TRUE PUSITION AS DEFINED BY BASIC DIMENSION " ${ }^{\circ}$ ", ± 0.05.
8. ALL DIMENSIONS CDMPLY TO JEDEC MD-203.
9. ALL DIMENSIONS APPLY TD BOTH LEADED (-) AND LEAD FREE (+) PACKAGE CDDES.
-DRAWING NOT TO SCALE-

Single/Dual SC70, Zero-Drift, High-Efficiency, 1.5MHz Op Amps with RRIO

| REVISION
 NUMBER | REVISION
 DATE | PAGES
 CHANGED | |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $7 / 09$ | Initial release | - |
| 1 | $9 / 09$ | Removed references to MAX9617 shutdown functionality | $1,2,3,6,7$ |
| 2 | $2 / 10$ | Removed future product reference for the MAX9618, and added MAX9619 and
 MAX9620 to the data sheet | $1-11$ |
| 3 | $6 / 10$ | Corrected General Description to show that only the MAX9619 has shutdown,
 corrected the MAX9617 Pin Configuration, and added soldering temperature | $1,2,12$ |
| 4 | $2 / 11$ | Updated bias current specifications | 2 |
| 5 | $7 / 11$ | Updated input and shutdown specs in the Absolute Maximum Ratings | 2 |

