

Micro Commercial Components

Features

Micro Commercial Components 20736 Marilla Street Chatsworth

CA 91311

Phone: (818) 701-4933 (818) 701-4939

BC817-16 **THRU** BC817-40

NPN Small

Signal Transistor 310mW

For Switching and AF Amplifier Applications **Epitaxial Planar Die Construction**

Mechanical Data

Moisure Sensitivity Level 1

150 C Junction Temperature

Case: SOT-23, Molded Plastic

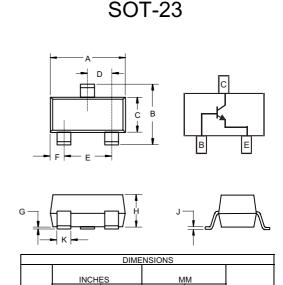
Terminals: Solderable per MIL-STD-202, Method 208

Lead Free Finish/RoHS Compliant ("P" Suffix designates

RoHS Compliant. See ordering information) Epoxy meets UL 94 V-0 flammability rating

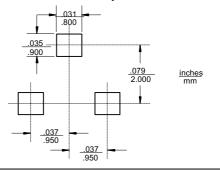
Ideally Suited for Automatic Insertion

Polarity: See Diagram


Weight: 0.008 grams (approx.) Marking: BC817-16 6A

> BC817-25 6B 6C BC817-40

Maximum Ratings @ 25°C Unless Otherwise Specified

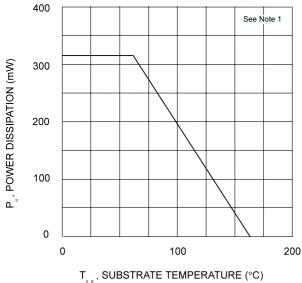

Charateristic	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	45	V
Emitter-Base Voltage	V_{EBO}	5	V
Collector Current	I _C	800	mA
Peak Collector Current	I _{CM}	1000	mA
Peak Emitter Current	I _{EM}	1000	mA
Power Dissipation@T _s =50°C(Note1)	P _d	310	mW
Operating & Storage Temperature	T_j , T_{STG}	-55~150	°C

Note: 1. Device mounted on Ceramic Substrate 0.7mm X 2.5cm² area

DIMENSIONS					
	INCHES		N		
DIM	MIN	MAX	MIN	MAX	NOTE
Α	.110	.120	2.80	3.04	
В	.083	.104	2.10	2.64	
C	.047	.055	1.20	1.40	
D	.035	.041	.89	1.03	
Е	.070	.081	1.78	2.05	
F	.018	.024	.45	.60	
G	.0005	.0039	.013	.100	
Ι	.035	.044	.89	1.12	
٦	.003	.007	.085	.180	
K	.015	.020	.37	.51	

Suggested Solder Pad Layout

BC817-16 thru BC817-40



Micro Commercial Components

Electrical Characteristics

@25°C unless otherwise specified

Characteristic		Symbol	Min	Max	Unit	Test Condition
DC Current Gain	Current Gain Group -16 -25 -40 Current Gain Group -16 -25 -40	h _{FE}	100 160 250 60 100 170	250 400 600 — —	_	$V_{CE} = 1.0V, I_{C} = 100 \text{mA}$ $V_{CE} = 1.0V, I_{C} = 300 \text{mA}$
Thermal Resistance, Junction to Substrate Backside		R _{0SB}		320	K/W	
Thermal Resistance, Junction to Ambient Air		$R_{\theta JA}$	_	400	K/W	
Collector-Emitter Saturation Voltage		V _{CE(SAT)}	_	0.7	V	I _C = 500mA, I _B = 50mA
Base-Emitter Voltage		V _{BE}	_	1.2	V	V _{CE} = 1.0V, I _C = 300mA
Collector-Emitter Cutoff Current		I _{CES}	_	100 5.0	nΑ μΑ	V _{CE} = 45V V _{CE} = 25V, T _j = 150°C
Emitter-Base Cutoff Current		I _{EBO}	_	100	nA	V _{EB} = 4.0V
Gain Bandwidth Product		f⊤	100		MHz	$V_{CE} = 5.0V, I_{C} = 10mA,$ f = 50MHz
Collector-Base Capacitance		Ссво		12	pF	V _{CB} = 10V, f = 1.0MHz

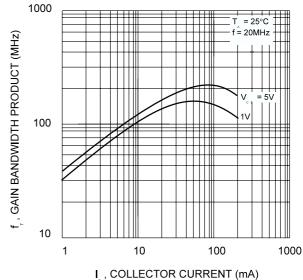
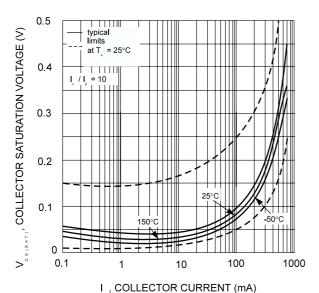
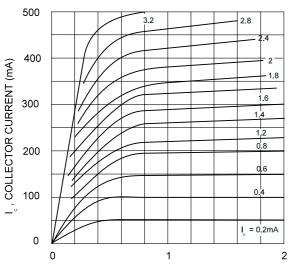
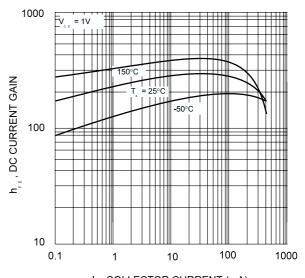


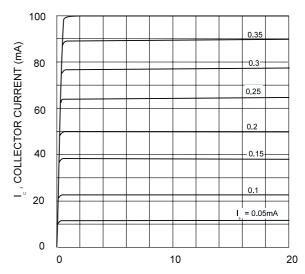
Fig. 1, Power Derating Curve

Fig. 2, Gain-Bandwidth Product vs Collector Current

BC817-16 thru BC817-40

Micro Commercial Components


Fig. 3, Collector Sat. Voltage vs Collector Current

 $V_{_{\circ}}$, COLLECTOR-EMITTER VOLTAGE (V) Fig. 5, Typical Emitter-Collector Characteristics

I , COLLECTOR CURRENT (mA) Fig. 4, DC Current Gain vs Collector Current

 $V_{_{\rm c\,E}}$, COLLECTOR-EMITTER VOLTAGE (V) Fig. 6, Typical Emitter-Collector Characteristics

Micro Commercial Components

Ordering Information:

Device	Packing
Part Number-TP	Tape&Reel 3Kpcs/Reel

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.