SK 9GD065

SEMITOP[®] 2

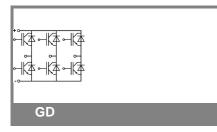
IGBT Module

SK 9GD065

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT


CAL technology FWD

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Symbol	Symbol Conditions		Values		
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 125 °C	T _s = 25 °C	11	А	
		T _s = 80 °C	8	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		12	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs	
Inverse D	Diode				
I _F	T _j = 125 °C	T _s = 25 °C	22	A	
		T _s = 80 °C	15	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		30	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 0,2 mA		3	4	5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,03	mA	
		T _j = 125 °C				mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		133		mΩ	
		T _j = 125°C		183		mΩ	
V _{CE(sat)}	I _{Cnom} = 6 A, V _{GE} = 15 V			2	2,5	V	
		T _j = 125°C _{chiplev.}		2,2	2,7	V	
C _{ies}				0,35		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,038		nF	
C _{res}				0,023		nF	
t _{d(on)}				20		ns	
t _r	R _{Gon} = 120 Ω	V _{CC} = 300V		25		ns	
E _{on}		I _{Cnom} = 6A		0,22		mJ	
t _{d(off)}	R _{Goff} = 120 Ω	T _j = 125 °C		145		ns	
t _f		V _{GE} =±15V		25		ns	
E _{off}				0,12		mJ	
R _{th(j-s)}	per IGBT				2,6	K/W	

1

SK 9GD065

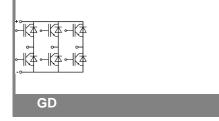
SEMITOP[®] 2

IGBT Module

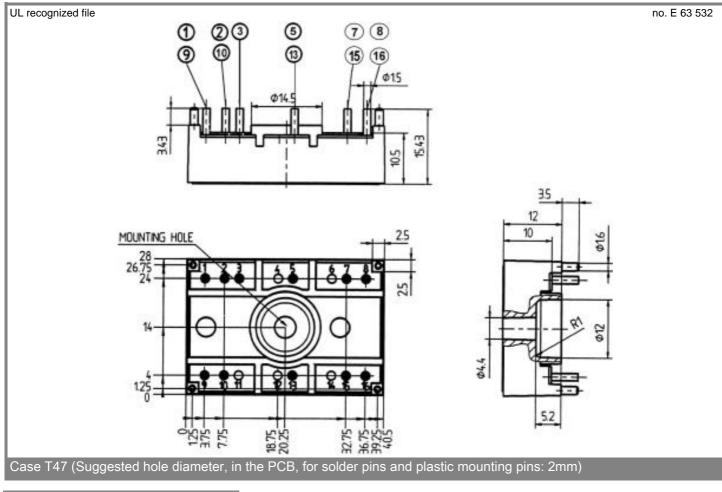
Preliminary Data

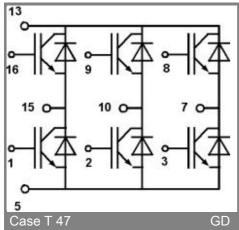
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL technology FWD


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	ode					
V _F = V _{EC}	I _{Fnom} = 15 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4	1,7	V
		T _j = 125 °C _{chiplev.}		1,4	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		30	40	mΩ
		T _j = 125 °C		33	47	mΩ
I _{RRM}	I _{Fnom} = 15 A	T _i = 125 °C		22		А
Q _{rr}	di/dt = 1100 A/µs	,		1,5		μC
E _{rr}	V _{CC} = 300V			0,31		mJ
R _{th(j-s)D}	per diode				2,3	K/W
M _s	to heat sink				2	Nm
w				21		g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK 9GD065

