IMO iSmart

Operation Manual - Second Edition

IMO Precision Controls Ltd

Safety Precaution

Precautions for Installation:

1
Never install the product in the environment beyond the one specified in the brochure and user manual, such as high temperature, humidity, dust, erosive gas, vibration, impact condition resulting in the risk of inductive electricity, fire and error operation.

Please comply with the installation instruction in the user manual to avoid damage or operation error.

Pay close attention to avoid cable or conductor parts falling into the iSmart to prevent fire or electrical fault.

Precautions for Wiring:

Connect Class 3 grounding in accordance with the local Electricity Engineering Regulations.
Apply the rated power supply and specified cables. Incorrect power supply could result in damage to the unit.

The wiring shall be carried out by the certified electrician pursuant to the provisions set forth in the local Electricity Engineering Regulations.

Precautions for Operation:

When the power is on, never contact the terminal to avoid short circuit.
It is recommended to add safety protection such as an emergency stop and external protection to prevent the iSmart from electrical damage. Run the iSmart after safety confirmation. Error operation will result in mechanical damage.

Please pay attention to the power linkage procedure. Wrong process flow would lead to mechanical damage or other hazards.

Table of Contents

Chapter 1 General

Chapter 2 Operation Precautions

Chapter 3 System Configuration

3-1 Basic System Configuration

3-2 Configuration - Computer Connection and Program Cartridge

Chapter 4 Installation
4-1 Installation environment
4-2 Direct Installation
4-3 DIN-Rail Installation
Chapter 5 Wiring
5-1 Precautions for Wiring
5-2 $\quad 10 / 12$ points variant
5-3 20 points variant
Chapter 6 Operation Flow
6-1 After Power Supply Connection
6-2 Program transfer
6-3 Scan time
6-4 Response time - diagram
Chapter 7 Ladder Instruction
7-1 Basic Instruction
7-2 Basic Instruction Function

- D (d) Instruction Function
- NORMAL (-[] output
- SET (A) output
- RESET (\vee) output
- Poutput

7-3 Application Instruction

- General Counter
- High-speed Counter (only avalible in DC Power Supply types)
- Timer
- RTC
- Analog Comparator
- HMI(Text Function)
- PWM Output Function (only avalible in Transistor output types)
- DATALINK Function (only avalible in SMT-C types)

7-4 Operation Method

- Language setting
- Time setting

Chapter 8 FBD Description

8-1 Coil Block
8-2 Logic Block
8-2 Function Block
8-4 FBD Block Resource
8-5 FBD Edition Method
Chapter 9 System Design
9-1 Procedure
9-2 Consideration for Designing
9-3 Allocation of Relay Code

Chapter 10 Spare Program

10-1 Spare Program Cartridge (SMT-PM04)
10-2 Computer Written Software (SMT CONFIGURATOR)

Chapter 11 Trial Run

11-1 Pre-Trial run Confirmation
11-2 Trail Run Procedure

Chapter 12 Maintenance and Inspection

12-1 Periodic maintenance
12-2 Trouble Shooting
Chapter 13 Specification

13-1 General Specification

13-2 Input and output Specification

13-3 Profile Dimension

Appendix Application Example

Chapter 1 General

The iSmart is a tiny "smart" PLC having upto 44 I/O points and using either a ladder graphical or FBD program, and applicable to the small-scale automated systems. iSmart can have upto 3 expansion modules of 4-inputs \& 4-outputs. The power and flexibility of the iSmart allows the user to automate smaller processes saving time and cost.

The special features of the iSmart are presented below:

Feature 1

Complete product range:

(1) Main Module Dimensions:
a. $10 / 12$ point variant: $72 \times 90 \times 57.3(\mathrm{~mm})$
b. 20 point variant: $126 \times 90 \times 57.3(\mathrm{~mm})$
(2) Expansion Module Dimensions:
a. Max. 3 units: $38 \times 90 \times 57.3(\mathrm{~mm})$
(3) Real Time Clock
(4) Analog inputs (DC supply models)
(5) Models with or without Display and Keypad

Feature 2

Selective input and output

(1) Input:
a. 85-264Vac
b. $21.6-26.4 \mathrm{Vdc}(24 \mathrm{Vdc}$ supply)
c. $10.4-14.4 \mathrm{Vdc}(12 \mathrm{Vdc}$ supply $)$
(2) Output: Relay or Transistor

Feature 3

Easy to program and to operate
(1) Built-in 12×4 LCD display and 8 keys for inputting ladder program
(2) PC configuration software compatible with Windows 95/98/ME/NT/2000/XP
(3) PDA configuration software. (HP iPAC)
(4) Seven languages: English, French, Spanish, Italian, German, Portuguese and Chinese.

Feature 4

Easy installation and maintenance

(1) Screw mounting
(2) DIN rail mounting
(3) Spare program cartridge SMT-PM04 (optional)
(4) LCD display shows input and output status

Feature 5

(1) Two digital output types
a. Relay, Max. 8A/point, with resistive load.
b. Transistor output $0.5 \mathrm{~A} /$ Point.
(2) Directly drive $1 / 3$ HP motor.
(3) Large program memory
a. Max. 200 step instructions (Ladder)
b. Max. 99 Function blocks (FBD)
(4) Built-in Application Functions
a. Timer
b. Counter
c. Time comparison
d. Analog comparison
e. Upper and lower differentiation
f. PWM Function
g. DATALINK Function
h. REMOTE I/O Function
i. HMI Function
(5) Global certification:
a. CE
b. cUL/UL

Chapter 2 Operation Precaution

(1) Installation Environment

IMO recommend that you do not install iSmart in the following conditions:
a. In direct sunshine or when the ambient temperature is beyond $55^{\circ} \mathrm{C}$
b. The relative humidity exceeds 90%.
c. The environment is subject to rapid temperature change or condensation.
d. The area contains flammable or corrosive gases
(2) Installation
a. Firmly fasten the cable with lock screws to ensure proper contact.

Installation drawing

(3) Wiring

The I/O signal cables should not be routed parallel to the power cable, high current cable or in the same high current cable trays to avoid the signal interference.
(4) Static Electricity

In extremely dry areas, a persons body is susceptible to generate static electricity. Never touch the iSmart with hands to avoid static damage to the unit.
(5) Cleanness

Use the clean and dry cloth to wipe the surface of the iSmart. Never clean the iSmart with water or volatile solvents to prevent structure deformation and discoloration.
(6) Storage

The time memory of iSmart RTC applies super capacity which is susceptible to high temperature and humidity. The iSmart RTC should be kept away from such conditions.
(7) Over-current Protection

The iSmart does not incorporate a protective fuse at the output terminals. To avoid the short circuit on the load side, use of a fuse between each output terminals and load is recomended.

Chapter 3 System Configuration

3-1 Basic System Configuration

iSmart 10 points:
Expansion variant
SMT-EA-R10
SMT-ED-R12
SMT-ED-T12

Blind variant
SMT-BA-R10
SMT-BD-R12
SMT-BD-T12

iSmart expand 8points:
SMT-MA-R8
SMT-MD-R8
SMT-MD-T8

iSmart 20 points:

Blind variant	High-Speed variant
SMT-BA-R20	SMT-CD-R20
SMT-BD-R20	SMT-CD-T20

SMT-BD-T20
Expansion variant
SMT-EA-R20
SMT-ED-R20
SMT-ED-T20

computer

Client software

3-2 Configuration for computer Connection and Spare Program Cartridge

(1) Link the computer and iSmart with SMT-PC03. Through the SMT-CONFIURATOR (software), the computer is ready to read and write the programs contained within the iSmart and monitor on line operation of the iSmart. (See the figure below)

PM04 (program spare cartridge)

Figure 3-2-1
(2) Plug SMT-PM04 into the iSmart which, following the menu instructions is able to load and recover the programs from the SMT-PM04 (See the figure below)

Figure 3-2-2

Chapter 4 Installation

4.1 Installation Environment

The iSmart is not recommended to be installed under the following environments:

- If the ambient temperature is beyond $0-55 \mathrm{Deg} \mathrm{C}$.
- If the relative humidity exceeds 90%.
- The environment has high concentrations of dust, salt or iron powder.
- In direct sunlight.
- If the environment is subject to frequent vibration and impact.
- If the envirnment contains corrosive or flammable gases.
- If the environment contains volatile oil, gas, solvent, ammonia or electrolytic gas.
- Poor ventilation or close to heating source.

4.2 Direct Installation

Use $\mathrm{M} 4 \times 15 \mathrm{~mm}$ screw to directly install the iSmart on the tray as shown below.

If the expansion module is to be installed, plug the module into the Master after the Master is fixed. Install with M4×15mm Screw.

To uninstall, repeat the process in reverse.
First loosen the expansion screw, then press expansion button to disconnect the module and the master. Finally, loosen the master screw to uninstall the master.

4-3 DIN Rail Installation

Installing on DIN Rail
To install

Press the slots on the back of the iSmart and expansion module plug connector onto the rail until the plastic clamps hold the rails in place. Then connect the expansion module and connector with the Master (press the PRESS-BUTTON simultaneously)

To uninstall
Press the expansion button and pull off the clamp, pull the iSmart upward till the unit free from the rail.

It is recommended to apply clamp to hold the iSmart in place.

Chapter 5 Wiring

5.1 Precaution for Wiring

- The I/O signal wire should not be routed with the power wire or placed in the same tray.
- Use $0.75-3.5 \mathrm{~mm}^{2}$ cable as the external wire.
- Apply $4 \sim 6 \mathrm{kgf.cm}$ torques to tighten the lock screws.

5-2 10/12 points Variant

Power Supply and Input Terminal

AC ($100 \sim 240 \mathrm{~V}$ AC)
DC (24V DC)
(6)

Output terminals

5-3 20 points Variant

Power Supply and Input Terminal

$$
\text { AC }(100 \sim 240 \mathrm{~V} \mathrm{AC}) \quad \text { DC (} 24 \mathrm{~V} \text { DC) (with Analog Voltage Input) }
$$

Data Link or Remote I/O Link

It is imperative to provide an external surge absorber and fuse to protect the power supply and output circuit.

1) Surge absorber (400V AC)
2) Fuse (2A)
3) Surge absorber (36V DC)
4) Fuse (2A)
5) AC output: Fuse or short circuit Protective Device
6) DC output: Fuse
7) Common terminal for analog voltage input should be connected with the same groundterminal of DC power supply.

The power supply and the input shall share the same power source.

In accordance to EIA RS-485 standard. Data Link can connect a Maximum of 8 modules (ID:1~8).
REMOTE I/O can only connect 2 modules (MASTER \& SLAVE).

5-4 Relay Life
Life Expectancy

Note 1: The values illustrated in the above graph are standard. The service life of the relay will be adversely affected by high ambient temperature.
Note 2: When the current is kept less than 2 A , the service life of the relay is about 100,000 operations.

Chapter 6 Operation Flow

6.1 After Power Supply Connection

(1) Initialisation of Data Memory

After the power supply is connected, initial data will appear in the data memory. Before the completion of the first scan cycle, the input relay will update the execution data in accordance with ON/OFF conditions, the output relay and the input relay will carry out the operations of the program.
(2) Transfer Programs from ROM -> RAM

After power is applied, the stored program in EEPROM will be transferred to RAM.
(3) Scan Time

The scan time refers to the time for processing input and output data and the process time of the program applied until the final result is obtained.

The scan time is related to the capacity of the Instruction:

- Ladder mode: 5~20mS;
- FBD: $2 \sim 10 \mathrm{mS}$
\bullet
(4) Overall Response Time for iSmart
ta: Input OFF -> ON response time
tb: one scan time
tc: Output OFF-> ON response time

Chapter 7 Description for LADDER Instruction

7-1 Basic Instruction

	(A	\checkmark	P	-1	\cdots	NO. / NC
Input Instruction					I	i	I1~IC / i1~iC
Output Instruction	Q	Q	Q	Q	Q	q	Q1~Q8 / q1~q8
Auxiliary Instruction	M	M	M	M	M	m	M1~MF / m1~mF
RTC Instruction	R				R	r	R1~RF / r1~rF
Counter Instruction	C				C	c	$\mathrm{C} 1 \sim \mathrm{CF} / \mathrm{c} 1 \sim \mathrm{cF}$
Timer Instruction	T			T	T	t	T1~TF/t1~FF
Analog Comparing Instruction	G				G	g	G1~GF / g1~gF
HMI Instruction	H						H1~HF
PWM Instruction	P						P1
DATALINK	L						L1~L8

	Upper differential	Lower differential	Other Instruction Symbol
Differential Instruction	D	d	
SET Instruction			A
RESET Instruction			\vee
P Instruction			P

Open Circuit	" "	
Short Circuit	"--"	

Link Symbol	Description
-	Connecting left and right Components
\perp	Connecting left, right and upper Components
+	Connecting left, right, upper and lower Components
T	Connecting left, right and lower Components

7-2 Function of Basic Instruction

Function D (d) Instruction

1: I1 - D ----[Q1

NORMAL (-[]output
I1 ----[Q1

I 1	OFF \quad ON	OFF

Q1	OFF	OFF

SET (A) output
I1 ----A Q1

I1	OFF	ON	OFF

Q1	OFF	ON

RESET (\vee) output

I1 ---- \vee Q1		
I1	OFF	ON

Q1	ON \quad OFF

P output
i1 ----PQ1

I1 is adverse to I1 in phase

7-3 Application Instruction

General Counter

Note :

Symbol	Description
(1)	Counting Mode (1-6)
(2)	Use (I1 $\sim \mathrm{gF}$) to set counting up or counting down OFF: counting up ($0,1,2,3,4 \ldots$. ON: counting down ($\ldots .3,2,1,0$)
(3)	Use (I1 ~gF) to RESET the counting value ON : the counter reset to zero and OFF OFF: the counter continues to count
(4)	Present Counting Value, range:0~999999
(5)	Target (Setting) Value, range:0~999999
©	Code of the counter (C1 ~ CF total: 15 groups).

- The setting value of the counter can be a constant, present value of a timer, counter or analog input A1~A4.
- For I1~gF, Input terminal: I1~IC (I1~I12).
- Output terminal: Q1~Q8,
- Expansion Input Terminal: X1~XC (X1~X12).
- Expansion Output Terminal: Y1~YF (Y1~Y12).
- Counter: $\mathrm{C} 1 \sim \mathrm{CF}(\mathrm{C} 1 \sim \mathrm{C} 15)$, Timer: T1~TF (T1~T15).
- RTC Comparator: R1~RF (R1~R15).
- Analog Comparator: G1~GF (G1~G15),
- Auxiliary Terminal:M1~MF (M1~M15) .
- The upper case (I1) is Contact ' a ' while the lower (i1) case is Contact ' b '.
(1) Counter Mode 1
(1) $=1$

Example :
(2) Counter Mode 2

$$
(1)=2
$$

Note:

In this Mode, the counter present value can be greater than 20 , unlike the Mode 1 in which the value is locked at 20 .
(3) Counter Mode 3 is similar to the counter Mode 1 except that Mode 1 will store the recorded value after the power is cut off and continue counting when the power is restored.
(4) Counter Mode 4 is similar to the counter Mode 2 except that Mode 2 will store the recorded value after the power is cut off and continue counting when the power is restored.
(5) Counter Mode 5

Note:

In this Mode the counter present value can be greater than 20, unlike the Mode 1 in which the value is locked at 20 . If a reset is available, the present value will reset to 0 , regardless of the counting direction.
(6) Counter Mode 6 is similar to counter Mode 5, except that Mode 5 can store the recorded value after the power is cut off and continue counting when the power is restored.

(3)
(6)

The DC power supply variant has two, 1 KHz High speed input terminals, $\mathbf{I 1}$ and I 2 .
Two modes of high-speed counting function are available.
(1) Counter Mode 7

Symbol	Description
(1)	Counting mode(7)-high speed counting
②	High speed counting input terminal: only I1, I2 available.
③	Use I1~gF to reset counting value. ON: counter is reset to zero and ©OFF OFF: counter continues to count.
(4)	Counter present value: 0~999999
(5)	Counter target value: 0~999999
©	Code of Counter (C1~CF, Total: 15Groups)

(2) Counter mode 8

Symbol	Description
(1)	Counting Mode(8)-Frequency Comparison
(2)	High speed counting input terminal: only I1, I2 available.
(3)	Counting interval time:(0~99.99S)
(4)	Counter 'on' target value (000000~999999)
(5)	Counter 'off' target value (000000~999999)
©	Code of Counter (C1~CF Total :15Group)

Note :

As show in the diagram, the output will be delayed for one interval.

Timer \quad	Symbol	Description
(1)	Timer Mode (1-7)	
(2)	Timer Unit $: 1: 0.00 \sim 99.99 \mathrm{~s}$	
$2: 0.0 \sim 999.9 \mathrm{~s}$		

Note :

- The setting value of the timer can be a constant, the present value of a timer, counter
or analog input (A1~A4).
- For I1~gF, input terminal: $\quad \mathrm{I} 1 \sim \mathrm{IC}(\mathrm{I} 1 \sim \mathrm{I} 12)$.
- Output terminal:

Q1~Q8.

- Expansion input terminal: $\mathrm{X} 1 \sim \mathrm{XC}(\mathrm{X} 1 \sim \mathrm{X} 12)$.
- Expansion output terminal: Y1~YF(Y1~Y12).
- Counter:
$\mathrm{C} 1 \sim \mathrm{CF}(\mathrm{C} 1 \sim \mathrm{C} 15)$.
- Timer:

T1~TF(T1~T15).

- RTC Comparator:

R1~RF(R1~R15).

- Analog Comparator:

G1~GF(G1~G15).

- Auxiliary terminal:

M1~MF (M1~M15) .

- The upper case (I1) is Contact 'a' while the lower (i1) case is Contact ' b '.
(1) Timer Mode 1(ON-Delay A mode)

Example:

(2) Timer mode 2(ON-Delay B mode)

(3) Timer Mode 3(OFF-Delay A Mode)

(4) Timer Mode 4(OFF-Delay B Mode)

(5) Timer Mode 5 (FLASH A Mode)

(6) Timer Mode 6 (FLASH B Mode)

enable reset relay \qquad
$t=$ target value set in timer

(7) Timer Mode 7 (FLASH C Mode)

Note: This Mode will series connect two timers, t 1 and t 2 . In addition, add PTn, where $\mathrm{n}=1$, $2,3,4, \ldots \ldots$. E. but $\mathrm{Tn}+1$ Timer can not be used for other functions.

Sample : I1 \qquad -PT1 , $\mathrm{t} 1=\mathrm{T} 1$ Target value ; $\mathrm{t} 2=\mathrm{T} 2$ Target value.

RTC Instruction

Weekly Mode

Sym bol	Description
(1)	Input the first week to RTC
(2)	Input the second week to RTC
(3)	RTC mode(1~2) 1:daily ,2:consecutive days
(4)	RTC displays the hour of present time.
(5)	RTC displays the minute of present time
(6)	Set RTC hour ON
(7)	Set RTC Minute ON
(8)	Set RTC Hour OFF
(9)	Set RTC Minute OFF
	Code of RTC (R1~RF Total: 15Group)

Description for Week Code : Monday \sim Sunday $=$ MO , TU , WE , TH , FR , SA , SU
Year-Month-Day Mode

Symbol	Description
(1)	RTC mode 3, Year-Month-Day
(2)	Setting RTC Year ON
(3)	Setting RTC Year OFF
(4)	Display RTC Present time: Year-Month-Day
(5)	Setting RTC month ON
(6)	Setting RTC Day ON
(7)	Setting RTC month OFF
(8)	Setting RTC Day OFF
(9)	RTC Code (R1~RF, total 15 group)

(1) RTC Mode 1

Example 1:

③	1
(1) $:$ (2)	TU-FR
$:$ (7)	$08: 00$
⑧ $:$ (9)	$17: 00$

** Note : If ENABLE fails, output is OFF.

Example 2 :

(3)	1
(1) $:$ (2)	TU-FR
③ $:$ (7)	$17: 00$
⑧ $:$ ©	$8: 00$

Example 3 :

(3)	1

| (1) $:$ (2) | FR-TU |
| :---: | :---: | :---: |
| (6) $:$ (7) | $08: 00$ |
| (8) $:$ © | $17: 00$ |

Example 4 :

(3)	1
(1) $:(2)$	FR-MO
(6) $:$ (7)	$17: 00$
(8) $:$ (9)	$8: 00$

Example 5:

(3)	1
(1) $:$ (2)	SU-SU
(6) $:$ (7)	$08: 00$

(8) : ©	$17: 00$

Example 6:

(3)	1
(1) $:$ (2)	SU-SU
(6) $:$ (7	$17: 00$
(8) $:$ (9)	$8: 00$

(2) RTC Mode 2

Example 1:

(3)	2
(1) : (2)	TU-SA

(6) $: ~(7)$	$08: 00$
8 $: ~(9)$	$17: 00$

** Note: When ENABLE is unavailable, the output is OFF.

Example 2:

(3)	2
(1) $:$ (2)	TU-SA
(6) $:$ (7)	$17: 00$
(8) $:$ (9)	$08: 00$

Example 3:

(3)	2

①) : (2)	SA-TU
⑥ $:$ (7)	$08: 00$
(8) $:$ (9	$17: 00$

Example 4:

(3)	2
(1) $:$ (2)	SA-TU
(6) $:$ (7)	$17: 00$
(8) $:$ (9)	$08: 00$

Example 5 :

③	2
(1) $:$ (2)	SA-SA
© $\quad:$ (7)	$08: 00$
⑧ $:$ ©	$17: 00$

Example 6 :

(3)	2
(1) $:$ (2)	SA-SA
③ $:$ (7)	$17: 00$
⑧ $:$ ©	$08: 00$

(3) RTC Mode 3

Example 1 :

(1)	3

(2) / (5) / ©	$03 / 05 / 23$
(3) / (7) / 8	$04 / 12 / 22$

Year-Month-	2000/01/01	\ldots	2003/05/23	\ldots	\ldots	2004/12/22	\ldots	2099/1230
Day								
Time	0:00		0:00			0:00		0:00
ENABLE								
Rn Output :								

** Note : If ENABLE is fails, the output is OFF.

Example 2 :

(1)	3
(2) / (5) / ©	04/12/22
(3) $/ 7 / 8$	03/05/23

Example 3 :

(1)	3
(2) $/$ (5) $/$ (6)	$03 / 05 / 23$
(3) $/$ (7) $/ 8)$	$03 / 05 / 23$

Rn Output:

Analog Comparator

Symbol	Description
(1)	Analog Comparison Mode(1~5)
(2)	A $_{X}$ analog input (A1~A4), or the present value of the timer, counter.
(3)	A $_{Y}$ analog input (A1~A4), or the present value of the timer, counter.
(4)	A $_{X}$ analog input value(0.00~9.99)
(5)	A $_{Y}$ analog input value (0.00~9.99)
(6)	Set reference comparative value: can be a constant, present value of a timer, counter or analog input.
(7)	Output terminal(G1~GF)

The ON or Off of analog output terminals (G1~GF) is determined by the comparison of the analog inputs of Ax and Ay.
When the relay of an analog comparator is ON, one of 5 modes have been set:
(1) Analog Comparator mode $1\left(\mathrm{~A}_{\mathrm{Y}}-\right.$ (6) $\leq \mathrm{A}_{X} \leq \mathrm{A}_{Y}+$ (6), (7) ON$)$
(2) Analog Comparator mode $2\left(\mathrm{~A}_{X} \leq \mathrm{A}_{Y}\right.$, (7) ON)
(3) Analog Comparator mode $3\left(\mathrm{~A}_{X} \geq \mathrm{A}_{Y}\right.$, (7) ON)
(4) Analog Comparator mode 4 (6) $\geq \mathrm{A}_{\mathrm{X}}$, (7) ON)
(5) Analog Comparator mode 5 (6) $\leq \mathrm{A}_{\mathrm{X}}$, (7) $\mathrm{ON)}$

HMI Function

This function block can display the information as word information, present and target values of counters, timers, RTC and Analog comparators. In run mode, modification of timer, counter or analog comparator presets via the HMI is achievable. The HMI can display the status of input and output terminals, as well as Auxiliary relays.

Symbol	Description
(1)	Display mode (1~2)
(5)	HMI character output terminal (H1~H8)

(1) The Display mode can be changed via the function keys:

First page displayed $=1$
First page not displayed $=2$.

The displayed information can only be set via the SMT-CONFIGURATOR. In run mode, modification of the target value of a timer, counter, RTC or analog comparator is available via the HMI of the controlled equipment.

For HMI configuration, please refer to SMT-CONFIGURATOR HELP file 。

The following example shows how to modify the preset value of C 1 in run mode.
To set the preset value of the counter as the present value of $\mathbf{T} 2$ via the HMI.

Step1: In the HMI screen, press 'SEL', the cursor blinks in the following location.

\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{0}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{C}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$					

Step2: Press 'DOWN' and the cursor skips to C1 preset value position.

\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{0}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{C}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$		

$$
\begin{array}{llllll}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}
$$

Step3: Press 'SEL' three times, the preset value changes from 000000, A1 to T1.

\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{0}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{C}	$\mathbf{1}$	$=$	\mathbf{T}	$\mathbf{1}$						
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$					

Step4: Press 'UP'

T	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$	\cdot	$\mathbf{0}$	$\mathbf{0}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{C}	$\mathbf{1}$	$=$	\mathbf{T}	$\underline{2}$						
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$					

Step5: Press 'OK' to save the setting.

\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$	\cdot	$\mathbf{0}$	$\mathbf{0}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{T}	$\mathbf{1}$	$=$	$\mathbf{0}$	$\mathbf{0}$.	$\mathbf{0}$	$\mathbf{5}$	\mathbf{S}	\mathbf{e}	\mathbf{c}
\mathbf{C}	$\mathbf{1}$	$=$	\mathbf{T}	$\mathbf{2}$						
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$					

PWM Output Function (transistor output variant only)

The transistor output variant has a PWM output terminal 'Q1' which can output 8-stage PWM waveforms.

- For I1~gF, input terminal: $\mathrm{I} 1 \sim \mathrm{IC}(\mathrm{I} 1 \sim \mathrm{I} 12)$,
- Output terminal: Q1~Q8,
- Expansion input terminal: X1~XC (X1~X12),
- Expansion output terminal: Y1~YF (Y1~Y12)
- Counter: $\mathrm{C} 1 \sim \mathrm{CF}(\mathrm{C} 1 \sim \mathrm{C} 15)$,
- Timer: T1~TF (T1~T15),
- RTC Comparator: R1~RF (R1~R15),
- Analog Comparator: G1~GF (G1~G15),
- Auxiliary terminal: M1~MF (M1~M15) .

The upper case (I1) is Contact ' a ' while the lower (i1) case is Contact ' b '.

The output waveform of output terminal ' $\mathrm{P} 1-8$ ' is determined by the preset waveform of input terminal 1-(3), 2-(4), 3-(5) and PWM Enable.

Enable	(5	4	(3)	(2)	8)Output PWM
OFF	X	X	X	0	OFF
ON	OFF	OFF	OFF	1	Set stage 1
ON	OFF	OFF	ON	2	Set stage 2
ON	OFF	ON	OFF	3	Set stage 3
ON	OFF	ON	ON	4	Set stage 4
ON	ON	OFF	OFF	5	Set stage 5
ON	ON	OFF	ON	6	Set stage 6
ON	ON	ON	OFF	7	Set stage 7
ON	ON	ON	ON	8	Set stage 8

Note : X indicated ON/OFF input terminal is idle.

DATALINK Function (SMT-C variant only)

Symbol	Description
(1)	Mode setting (1,2) 1:sending 2:receiving
(2)	Set the send/receive points(1~8)
(3)	Set the send/receive points
$④$	Send/receive memory list location
(5)	Data link output terminal (L1~L8)

Note:
(1) Only one send mode can be set at L1~L8, others are for receiving mode.
(2) Selecting; input points I1~IC (I1~I12), output points Q1~Q8, expansion input points X1~XC (X1~X12), expansion output points Y1~YF (Y1~Y12), auxiliary points M1~MF (M1~M15)
(3) Receiving mode is determined by the controller ID which can not be changed, as the
left list shows. The receiving mode can be selected:

W1,W9,W17,W25,W33,W41,W49 and W57.

ID	Memory List Location
0	W1~W8
1	W9~W16
2	W17~W24
3	W25~W32
4	W33~W40
5	W41~W48
6	W49~W56
7	W57~W64

Example 1:

DATALINK Mode 1

Set (1) $=1,(2)=5$, set (3) as start from I3, the state of actual sending terminal I3~I7 is sent to memory list; the controller ID $=3$, the state of corresponding memory list position W17~W24-(4) and relationship of sending terminal is as below:
(1) $=1$ (2) $=5$
(3) : I3~I7
$\mathrm{D}=3$ (4) : W17~W24)

Example 2:
DATALINK mode 2

Set (1) $=1, ~(2)=5$, set (3) as start from I3, set (4) as start from W17, when enabling the Datalink, the state 'ON/OFF' of I3~I7 is controlled by the state of memory list position W17~W21-4), which is irrelative to the actual state of input terminal.
(1) $=1$ (2) $=5$ (3) : I3~I7
(4) : W17~W21

7-4 Operation Method

The Original Screen as Power is ON.
(1) Language Setting Screen:

$>$	ENGLISH
	FRANÇAIS
	ESPAÑOL
	ITALIANO

4 Line Display Screen

Language Selecting Menu.

Press the buttons

$\uparrow \downarrow$	Move the Cursor
OK	Enter the selected language, and display the screen for time setting.

(2) Present Time Setting Screen

Press the button:

SEL	Begin to input the value
SEL $+\leftarrow / \rightarrow$	Move the Cursor
SEL $+\uparrow / \downarrow$	1. Year $=00 \sim 99$, Month $=01 \sim 12$, Day $=01 \sim 31$ 2. Week $\Leftrightarrow \mathrm{TU} \Leftrightarrow \mathrm{WE} \Leftrightarrow \mathrm{TH} \Leftrightarrow \mathrm{FR} \Leftrightarrow \mathrm{SA} \Leftrightarrow \mathrm{SU} \Leftrightarrow \mathrm{MO}$ 3. Hour $=00 \sim 23$ or Minute $=00 \sim 59$
OK	Save the RTC Time, Finish the original screen setting, then Display power Start Screen.

Note : The default method is LADDER Edit Mode as the original screen is set.

Original Screen as the power is on.

Press the button:

ESC	Back to Main Menu
SEL $+\uparrow \downarrow$	Under LADDER Edit Mode, display the state of other relays(expansion $\mathrm{X} \& \mathrm{Y} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{T} \Leftrightarrow \mathrm{C} \Leftrightarrow \mathrm{R} \Leftrightarrow \mathrm{G} \Leftrightarrow \mathrm{A}) \Leftrightarrow$ Original Screen
SEL	H Function will be displayed as the button is pressed for 3 seconds. If Mode 2 is selected for HMI, the H Function will not be displayed.

Example:

a) Display other relay operation:

(1) Expansion display State

(2) M Display Status:

Code of Relay

(3) T Display State:

(4) C Display State:

(5) R Display State:

(6) G Display State:

(7) Analog Input Value:

b) Operation to Display H Function:

Main Menu

LCD displays 4-line Main Menu

(1) The Main Menu as iSmart under 'STOP' Mode.

> LADDER	
FUN.BLOCK	
RUN	
CLEAR PROG.	\rightarrow Clear the user program and the password
WRITE	\rightarrow Save user program to PM04
READ	\rightarrow Read user Program from PM04
SET	
RTC SET	
ANALOG SET	
PASSWORD	
LANGUAGE	\rightarrow Select the language
INITIAL	\rightarrow initially set Edit method

(2) The Main Menu as iSmart under 'RUN' Mode.

LADDER
FUN.BLOCK
STOP
WRITE
RTC SET
WRITE
PASSWORD
LANGUAGE

Press the Button

$\uparrow \quad \downarrow$	Move the Cursor to select Main Menu
OK	Confirm the selected Function
ESC	Skip to Initial Screen

- iSmart can be modified, edited, cleared and read user program only when it is under STOP Mode.
- As the program is modified, iSmart will automatically backup it to EEPROM.(not PM04)

1．Main Menu LADDER

Press the Button

Button	Description
SEL	1． $\mathrm{Ix} \Rightarrow \mathrm{ix} \Rightarrow-\Rightarrow$ space $\Rightarrow \mathrm{Ix}$（only for digital and character position of $1,3,5$ column．） 2． $\mathrm{Qx} \Rightarrow$ space $\Rightarrow \mathrm{Qx} \quad$（only for digital and character position of 8 column．）． 3． $\mathrm{T} \Rightarrow$ space $\Rightarrow \mathrm{T}$ （all available but the $2,4,6$ column of the first line） x ：Digital：1～F
SEL $+\uparrow / \downarrow$	1．1．．．F，－（When the cursor locates the digital position，the range of digital is restricted by the relay type． $\text { 2. } I \Leftrightarrow X \Leftrightarrow Q \Leftrightarrow Y \Leftrightarrow M \Leftrightarrow D \Leftrightarrow T \Leftrightarrow T \Leftrightarrow R \Leftrightarrow G \Leftrightarrow I$ （When the cursor located at $1,3,5$ Column）． 3． $\mathrm{Q} \Leftrightarrow \mathrm{Y} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{T} \Leftrightarrow \mathrm{C} \Leftrightarrow \mathrm{R} \Leftrightarrow \mathrm{G} \Leftrightarrow \mathrm{H} \Leftrightarrow \mathrm{L} \Leftrightarrow \mathrm{P} \Leftrightarrow \mathrm{Q}$ （When the cursor located at 8 Column） 4．（ $\Leftrightarrow A \Leftrightarrow \vee \Leftrightarrow P \Leftrightarrow$（（When the cursor located at 7 Column，and the 8 Column is set as $\mathrm{Q}, \mathrm{Y}, \mathrm{M})$ 5．（ $\Leftrightarrow \mathrm{P} \Leftrightarrow(($（When the cursor located at 7 Column，and the 8 Column is set as T$)$
SEL $+\leftarrow / \rightarrow$	Confirm the input data and move the cursor
\uparrow / \downarrow	Vertically move the cursor
$\leftarrow \rightarrow$	Horizontally move the cursor
DEL	Delete an instruction
ESC	1．Cancel the Instruction or action under Edition． 2．Back to Main Menu after query the program．
OK	1．Confirm the data and automatically save，the cursor moves to next input position． 2．When the cursor is on Column 8，Press the button to automatically enter the function block and set the parameters（such as T／C）。
SEL＋DEL	Delete a Line of Instruction．
SEL＋ESC	Display the number of the Lines and operation state of iSmart（RUN／STOP）。
SEL＋个／\downarrow	Skip up／down every 4－line program．
SEL＋OK	Insert a space line

Operation Example：

Procedure 6:		1 l	$4!5 \quad 6: 7: 8$	Column
Press ' \uparrow ' for 3 times	Line 1	q 4		
(''Press 'SEL' + ' $\downarrow \downarrow$ '				
the digital the cursor located will				
change from 1 to 4)				

Repeat the step1~7, and input M1, I3 Instruction to column 3, 5.

Procedure 11:		$11 \quad: 2: 3 \quad: 4: 5 \quad: 6: 7: 8$	Column
Press ' \rightarrow ' twice	Line 1 2	$\mathrm{q} 4-\mathrm{M} 1-\mathrm{I} 3-(\mathrm{Q} 1$	
(move the cursor to column 1 and Line 2.)	$\begin{gathered} 3 \\ 4 \end{gathered}$		

Repeat the step 1~7 and key in 'r 3 ', —" at Line 2 and column 3~6.

Procedure 20 :

Delete the Program Element

Display the present Line the cursor locating and operation state of SG2.

Delete the whole Line

Insert a whole line.:

Turnpage (move upward/ downward 4 lines program.):

$\begin{aligned} & \text { step: } \\ & \text { Press 'SEL }+\uparrow \downarrow, \text { (at the same } \\ & \text { time) } \end{aligned}$			' column
	line 1		

2. FUNCTION BLOCK program input

Step 2: modify (1) preset target value (2) preset the action relay
(1) Preset the target value

Press ' \leftarrow '	Line 1	

Repeat Step 2-2 ~ step 2-4 for 3 times, to enter the following screen:

As the preset value of the timer, counter and analog comparator is set as the present value of them. next to the step 2-2, to execute the following operation:

Repeat the step 2-3A, the following screen will be shown in turn:

Next to step $2-3 A$, then ${ }^{\prime} \uparrow$ ', the following screen will be shown.

Repeat step $2-4 A$ (press ' \downarrow ' is also available), the preset value of A1~A4 will be periodically changed. And so on. The other function blocks (time, counter) present value is set as preset value, to repeat the step to select $\mathrm{T} 1 \sim \mathrm{TF}, \mathrm{C} 1 \sim \mathrm{CF}$.

$\begin{aligned} & 11 \text { step 2-5A: } \\ & \text { press 'OK' } \end{aligned}$	$\begin{array}{ll:l:l:l:l} 1 & 2 & 3 & 4 & 5 & 7 \\ \hline \end{array}$			column
	line	$\ulcorner\mathbf{1}$	7	
		$1 \dagger$	\|	
Save the present data.			$\begin{array}{lll}\vdash \\ \lrcorner & \mathbf{T} & 1\end{array}$	

(2) Edit action program and preset the action relay

The detail operation of modify the analog comparator Ax, Ay:

(2) Last Function Block

Procedure : Press 'SEL $+\downarrow$ ' (Simultaneously)				'	2	! 3		4				Column
		2 3 4		2	\perp	3		0			- T	

Delete Function Block

Back to Main Menu:

Press 'ESC'			Column

Change Function Block Category:

3. RUN or STOP

(1) RUN Mode
(2) STOP Mode

RUN PROG.
PYES
NO

STOP PROG.
XYES
NO

$\uparrow \quad \downarrow$	Move the cursor
OK	Execute the instruction, then back to main menu
ESC	Back to main menu

4. Other Menu Items

(1) CLEAR PROGRAM (Clear RAM, EEPROM and Password at the same time)

CLEAR PROG.
YES
$>\mathrm{NO}$

(2) WRITE (save the program (RAM) to the SMT-PM04 program spare cartridge)

WRITE
YES
$>$ NO

(3) READ (read the program from the SMT-PM04 program spare cartridge to iSmart (RAM))

READ
YES
$>\mathrm{NO}$

(1) ~ (3) Now Press:

$\uparrow \quad \downarrow$	Move the cursor
OK	Execute the instruction, then back to main menu
ESC	Back to main menu

(4) SET (system setting)

ID SET 01	\rightarrow	ID setting (00~99)
REMOTE I / 0 N	\rightarrow	Remote I/O Mode (N : none M: Master S:S lave)
BACK LIGHT	\rightarrow	Back light mode (V : always light \times : light for 5 s after pressed.)
M KEEP V	\rightarrow	M: non-Volatile (V :Volatile \times : Non- Volatile $)$
I/O NUMBER 0	\rightarrow	Expansion I/O Points (0~3)
I/O ALARM \downarrow	\rightarrow	Siren setting when is not available to Expansion I/O Points (\downarrow : Yes \times :No)
C KEEP \times	\rightarrow	in stop/run switching, Counter Present Value Keeping (V :Yes $\times: N o$)

Now Press:

$\uparrow \downarrow \leftarrow \rightarrow$	Move the cursor
SEL	Begin to edit.
Press 'SEL' and $' \leftarrow \rightarrow$ '	Move the cursor for 'ID SET item'
Press 'SEL' and ' $\uparrow \downarrow$ ’	1. ID SET $=00 \sim 99$; $/ / \mathrm{O}$ NUMBER $=0 \sim 3$ 2. REMOTE $I / \mathrm{O}=\mathrm{N} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{S} \Leftrightarrow \mathrm{N}$ 3. BACK LIGHT ; C KEEP $=x \Leftrightarrow \vee$ 4. M KEEP; I/O ALARM $=\sqrt{ }$ $\Leftrightarrow \times \times$
OK	Confirm the Edition Data
ESC	1. Cancel the setting when pressed 'SEL' 2. Back to Main Menu

Note:

(1)When DATALINK is selected, ID setting range is $1 \sim 8$, which should be continuous。ID $=1$ default as Master, $\mathrm{ID}=2 \sim 8$ default as Slave
(2)When REMOTE I/O is selected, the distribution of the remote I/O is as follows:

Master	
Remote Input	$\mathrm{X} 1 \sim \mathrm{X} 12$
Remote Output	$\mathrm{Y} 1 \sim \mathrm{Y} 8$

	Slave
\leftarrow	$\mathrm{I} 1 \sim \mathrm{I} 12$
$\mathrm{Q} 1 \sim \mathrm{Q} 8$	

(5) RTC Setting

Now Press

SEL	Begin to input parameters
Press 'SEL' $+\quad ‘ \leftarrow \rightarrow '$	Move the Cursor
SEL then $\uparrow \quad \downarrow$	$1 . \mathrm{YY}=00 \sim 99, \mathrm{NN}=01 \sim 12, \mathrm{DD}=01 \sim 31$ $2 . \mathrm{MO} \Leftrightarrow \mathrm{TU} \Leftrightarrow \mathrm{WE} \Leftrightarrow \mathrm{TH} \Leftrightarrow \mathrm{FR} \Leftrightarrow \mathrm{SA} \Leftrightarrow \mathrm{SU} \Leftrightarrow \mathrm{MO}$ $3 . \mathrm{HH}=00 \sim 23$ or $\mathrm{MM}=00 \sim 59$
OK	Save the Input Data
ESC	1. Cancel the Input Data when press 'SEL'. 2. Back to Main Menu.

(6) ANALOG SETTING

A 1=GAIN :010	\rightarrow	GAIN $(0 \sim 999)$
OFFSET $:+00$ A 2 $2=$ GAIN $: 010$ OFFSET $:+00$		

Now Press

$\uparrow \downarrow \downarrow$	1. Move downward the Cursor 2. Switch the setting screen from A1, A2 to A3, A4.
SEL	Begin to input parameters
Press 'SEL' $+\quad \leftarrow \rightarrow '$	Move the Cursor
'SEL' +	1. GAIN $=000 \sim 999$ ' $\uparrow \downarrow$,
2. OFFSET $=-50 \sim+50$	

(7) SETTING PASSWORD

Now Press

SEL	1. Begin to input numeral 2. When the password is ON, it will not display 0000, but $* * * *$.
Press 'SEL' + ' $\leftarrow \rightarrow$ '	Move the cursor
Press 'SEL' $+\quad \uparrow \downarrow$ + OK	$0 \sim 9$
ESC	Save the input data, not 0000, as the PASSWORD the Input Data when press 'SEL'.

(8) LANGUAGE Selection

>	ENGLISH	\checkmark	\rightarrow		English
	FRANÇAIS		\rightarrow		French
	ESPAÑOL		\rightarrow		Spanish
	ITALIANO		\rightarrow		Italian
	DEUTSCH		\rightarrow		German
	PORTVGVES		\rightarrow		Portugu
	SIMPLIFIED CHINESE		\rightarrow		Simplifi

Now Press

Press ' $\uparrow \downarrow '$	Vertically move the Cursor
OK	Select the language the cursor located
ESC	Back to Main Menu

Example:

(8) INITIAL

	INITIAL
$>$	LADDER
FBD	$\sqrt{ }$

Now Press:

Press ‘ $\uparrow \downarrow `$	Vertically move the Cursor
OK	Select the language the cursor located
ESC	Back to Main Menu

Chapter 8 FBD Block Description

8-1 Coil Block Diagram

	Input Terminal	Output Coil	Range
Input	I		$\mathrm{I} 01 \sim \mathrm{I0C}(12)$
Expansion Input	X		$\mathrm{X} 01 \sim \mathrm{X} 0 \mathrm{C}(12)$
Output	Q	Q	$\mathrm{Q} 01 \sim \mathrm{Q} 08(8)$
Expansion Output	Y	Y	$\mathrm{Y} 01 \sim \mathrm{Y} 0 \mathrm{C}(12)$
Auxiliary	M	M	$\mathrm{M} 01 \sim \mathrm{M} 0 \mathrm{~F}(15)$
Knob	N	N	$\mathrm{N} 01 \sim \mathrm{~N} 0 \mathrm{~F}(15)$
HMI		H	$\mathrm{H} 01 \sim \mathrm{H0F}(15)$
PWM		P	$\mathrm{P} 01(1)$
SHIFT		S	S01(1)
DATALINK	B	L	$\mathrm{L} 01 \sim \mathrm{~L} 08(8)$
Logic /Function Block	Hi		$\mathrm{B} 01 \sim \mathrm{~B} 99(99)$
Normal ON	Lo		
Normal OFF	Nop		
No Connection			

(2) PWM Function Block Description

(3) SHIFT Function Block Description

Input terminal description

Setting parameter description:

Symbol	Description
(1)	SHIFT code (Total 1 group)
(2)	Setting output type (Q,Y)
(3)	Setting output shift number (1~8)

(3) Shift number

Example:
(3) $=Q$, (3) $=s$ Shift ouput range: $Q 1 \sim Q s$

Note: When an enable input is used, Q1 ON, Q2~Q4 will be OFF, until the first shift input raise edge, Q2 ON, Q1 and Q3~Q5 OFF. The next output coil will be on when meeting each rising edge and others are OFF.

8-2 Edit Block

(1)AND Logic Diagram

FBD:

I01 And I02 And I03
Note : The input terminal is NOP
which is equivalent to ' Hi '

LADDER:

(2)AND (EDGE) Logic Diagram

FBD:

LADDER:

I01 And I02 And I03 And D
Note : The input terminal is NOP
which is equivalent to ' Hi '
(3)NAND Logic Diagram

FBD:

Not(I01 And I02 And I03)
Note : The input terminal is NOP which is equivalent to ' Hi '

LADDER:

(4)NAND (EDGE) Logic Diagram

FBD:

Not(I01 And I02 And I03) And d
Note : The input terminal is NOP which is equivalent to 'Lo'
(5)OR Logic Diagram

FBD:

I01 or I02 or I03
Note : The input terminal is NOP which is equivalent to 'Lo'

\rightarrow

LADDER:

(6)NOR Logic Diagram

FBD:

Not (I 01 or I02 or I03)
Note : The input terminal is NOP which is equivalent to 'Lo'
(7)XOR Logic Diagram

FBD:

I01 Xor I02
Note : The input terminal is NOP which is equivalent to 'Lo'

LADDER:

\rightarrow

LADDER:

(8)SR Logic Diagram

FBD:

Logic
Table

I01	IO2	Bxx
0	0	holding
0	1	0
1	0	1
1	1	0

Note: The input terminal is NOP which is equivalent to 'Lo'
(9)NOT Logic Diagram

FBD:

Not I01
Note : The input terminal is NOP which is equivalent to ' Hi '

LADDER:

LADDER:

(10)Pulse Logic Diagram

FBD:

Note : The input terminal is NOP
which is equivalent to 'Lo'

8-3 Function Block

The function blocks are classified into 4 sorts: Time, Counter, RTC Comparator 'R' and Analog Comparator ' G '. The Operation Fundamental is similar to Ladder Function Block's.

Common Counter Function Block

(1) Counter Mode 1

(2) Counter Mode 2

(3) Counter Mode 3

(4) Counter Mode 4

(5) Counter Mode 5

(6) Counter Mode 6

High Speed Counter Function Block

(1) Counter Mode 7

Note : High speed input terminal I1,I2
(2) Counter Mode 8

Note : High speed input terminal I1,I2
(1) Timer mode 1 (ON-Delay A Mode)

(2) Timer mode 2 (ON-Delay B Mode)

(3) Timer mode 3 (OFF-Delay A Mode)

(4) Timer mode 4(OFF-Delay B Mode)

(5) Timer mode 5(FLASH A Mode)

(6) Timer mode 6(FLASH B Mode)

(7) Timer mode 7(FLASH C Mode)

RTC Comparator Function Block
(1) RTC Mode 1(Daily)
(2) RTC Mode (Continuous)
(3) RTC Mode 3 (Year Month Day)

Analog comparator Function Bloc

(1) Analog Comparison Mode 1

Enable Input \rightarrow	
Analog Input \rightarrow	$A x \quad \dagger \mathrm{~A} y-\mathrm{R}$ \|
Analog Input \rightarrow	A y $\dagger \leqslant A x \leqslant \vdash$ - y y
Reference \rightarrow	R e $\mathrm{f} \perp^{\text {A }} \mathbf{y}+\mathrm{R}$ 」

(2) Analog Comparison Mode 2

(3) Analog Comparison Mode 3

Enable Input \rightarrow	
Analog Input \rightarrow	Ax †Ax
Analog Input \rightarrow	Ay $\dagger \geqslant$ Ay - By y
Reference \rightarrow	R e f \downarrow 」

(4) Analog Comparison Mode 4

(5) Analog Comparison Mode 5

8-4 FBD Block Resource

Under FBD edition mode, the logic block and function block shared the system memory. The total memory and shared memory is showed below.

	Function Block	Timer	Counter	RTC Comparator	Analog Comparator
Total Memory	99	15	15	15	15
Logic Block	1				
Timer Mode 1~6	1	1			
Timer Mode 7	1	2			
Counter Mode 1~8	1		1		
RTC Comparator Mode 1~3	1			1	
Analog Comparator Mode 1~5	1				1

Sample for calculate the memory in using:
When the FBD program contains 2 AND, 1 OR (Logic Block), 2 Timers Mode 1, 1 Counter Mode 7, RTC comparator Mode 1(Function Block), the total Diagram Blocks used are $2+1+2+1+1=7$, and the remained is $99-7=92$. The timer used is $2+2=4$, and the remained is $15-4=11$. The counter used is 1 , and the remained is $15-1=14$. The RTC comparator used is 1 , and the remained is $15-1=14$. The analog comparator is unused, so the usable are 15 .

8-5 FBD Edit Method

the origin screen when the power is on.

Now Press :

ESC	Back to Main Menu
$\uparrow \downarrow$	Display the state of the other relays(Expansion $X \& Y \Leftrightarrow M \Leftrightarrow N \Leftrightarrow A) \Leftrightarrow$ Original Screen
SEL	Press for 3s, H function content will be displayed, except the Mode 2 is selected in HMI.

Sample :
a) operation for displaying the state of other relay.

Expansion Display State

M Display State :

Relay Code

N Display State :

Analog input

b) Operation for displaying H Function Block.

The displayed values can be modified.

$$
\begin{array}{llllllll}
\mathrm{T} & 0 & 1 & = & 1 & 0 & 0 & 0 \\
\mathrm{C} & 1 & 2 & = & 0 & 0 & 4 & 0 \\
\mathrm{C} & 9 & 9 & = & 0 & 0 & 2 & 0
\end{array}
$$

Main Menu Screen

LCD displays 4 lines Main Menu selection
(1) When iSmart is under STOP mode, the main selection displays:

> FBD		
PARAMETER		
RUN		
CLEAR PROG.		
WRITE		
READ		
SET		Similar to
RTC SET	\rightarrow	Ladder Edit Mode.
ANALOG SET		
PASSWORD		
LANGUAGE		
INITIAL		

(2) When iSmart is under RUN mode, the main selection displays:

$\mid>$ FBD | |
| :--- |
| |
| PARAMETER |
| |
| STOP |
| WRITE |
| RTC SET |
| WRITE |$| \rightarrow$

Example:

Procedure (1)-1Original Screen	
	$\begin{array}{lllllll}\mathrm{N} & \mathrm{O} & \mathrm{P} & \mathrm{Q} & 0 & 1\end{array}$

(2) Nr Input terminal Screen

Now Press

$\leftarrow \rightarrow \uparrow \downarrow$	1. Move the cursor $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$ next output screen 2. If \quad is Bxx, Press ' \leftarrow ' to enter Bxx Screen.
ESC	1. Back to Main Menu

Example:

Following step (1)-7:

$\begin{aligned} & \text { Procedure (2)-1 } \\ & \text { Press ' } \leftarrow \text { ' or ' } \downarrow \text { ' } \end{aligned}$									
	B $\quad 0 \begin{array}{ll}\text { B }\end{array}$								
		0		3	O	R			
				2			M	0	9

(3) Edit Screen for Bn input terminal

Now press

$\leftarrow \rightarrow \uparrow \downarrow$	Move the cursor $\Leftrightarrow \Leftrightarrow \Leftrightarrow$ Output coil / Function block screen
OK	1. \quad enter the parameter setting screen of the function block
ESC	1. Back to Main Menu

Example:
Following the procedure (2)-3,

(4)HMI Setting Screen

Now press

SEL	Edit the mode
SEL $+\uparrow \downarrow$	Modify the mode (1~2)
OK	Save the modified mode after press 'SEL'.
ESC	1. Cancel the modified content after press 'SEL'. 2. Back to edit screen for coil(1)

Note : HMI text content setting should use SMT-CONFIGURATOR only.
(5)DATALINK setting screen

Now press

$\leftarrow \rightarrow \uparrow \downarrow$	Move the cursor $\Leftrightarrow \Leftrightarrow$
SEL	Begin to edit
SEL + $\uparrow \quad \downarrow$	1. \quad Modify the mode (1~2) 2. \quad modify the terminals point (1~8) modify the send/ receive terminals (I01~I0C, X01~X0C,Q01~Q08, Y01~Y0C,M01~M0F,N01~N0F)
OK	Save the modified content after press 'SEL'
ESC	1.Cancel the modified content after press 'SEL' 2. Back to edit screen(1) for coil

(6)PWM Setting screen

Now press

$\uparrow \downarrow$	Move the cursor $\Leftrightarrow \Leftrightarrow$
$\leftarrow \rightarrow$, move the cursor
SEL	Begin to edit
SEL 後	$1 \cdot \quad$ modify the setting stage (1~8) $\uparrow \quad \downarrow \leftrightarrow \rightarrow$
2• modify the pulse $\operatorname{width(00000\sim 32768)}$	
$3 . \quad$ modify the period (00001~32768)	

(7)SHIFT setting screen

Now press

$\uparrow \downarrow$	Move the cursor \Leftrightarrow
SEL	Begin to edit
SEL, then	$1 \cdot \quad$ modify the output type $\mathrm{Q} \Leftrightarrow \mathrm{Y} \Leftrightarrow \mathrm{Q}$
$\uparrow \quad \downarrow$	$2 \cdot \quad$ modify the move coil number (1~8)

2 PARAMETER of Main Menu

Now Press:

$\leftarrow \rightarrow$	1. display the previous / next Function Block Parameter 2. move the cursor
$\uparrow \downarrow$	1. move the cursor from to 2. move the cursor from , to
SEL then $\uparrow \downarrow$	1. modify the setting value 2. modify the time unit $(0.01 \mathrm{~s} \Leftrightarrow 0.1 \mathrm{~s} \Leftrightarrow 1 \mathrm{~s} \Leftrightarrow 1 \mathrm{~min})$
OK	Save the modified data after press 'SEL'
ESC	1. Cancel the modified data after press 'SEL' 2. Back to Main Menu.

Chapter 9 System Design

9-1 Procedure for system design

9-2 Consideration for System Design

The iSmart differs fundamentally from the traditional Relay in control circuit. iSmart is periodical-loop controlled circuit (series controlled circuit), while Relay is parallel controlled circuit. Consequently, if failure were to take place, it is only single relay that would be affected whereas the whole system is affected with a device such as smart

Therefore, it is recommended the external protection devices are installed:
(1) Emergency-Stop Circuit
(2) Protection Circuit
(3) Operation Circuit for High-Voltage Components

9-3 Code Distribution for Relay

(1) 10 Point:
(1) Input Code $\quad \mathrm{I}=1 \sim 6$
(2) Output Code $\quad \mathrm{Q}=1 \sim 4$
(2) 20 Point:
(1) Input Code: $\quad \mathrm{I}=1 \sim \mathrm{C}(12)$
(2) Output Code: $\mathrm{Q}=1 \sim 8$
(3) Expansion Point:
(1) Input Code: $\quad \mathrm{X}=1 \sim \mathrm{C}(12)$
(2) Output Code: $\quad \mathrm{Y}=1 \sim \mathrm{C}(12)$

Chapter 10 Spare Program

10-1 Spare Program Cartridge (SMT-PM04)

The installation method for PM04 (optional) is as follows:
Step 1 : Remove the cover of SG2 with the screwdriver, as follows:

Step 2: Plug SMT-PM04 into the slot, as follows:

Step 3: In the operation function list, click "WRITE" to enter the confirmation interface and click YES to download the spare program.

Note : If it is desired to recover the spare program, click "READ" on the operation function list to confirm the choice then click "YES" to upload the spare program.

Step 1: Remove the port cover of iSmart with a screwdriver or similar device, as follows:

Step 2: Insert SMT-PC03 (Cable) to the slot, as follows:
The other terminal of the cable is connected with the RS $\mathbf{2 3 2}$ communication port on computer.

Step 3: With SMT-CONFIGURATOR software, the computer is ready to read a program from, or write a program to the iSmart.

Chapter 11 Test Run

11-1 Confirmation before Test Run

11-2 Procedure of Test Run

Chapter 12 Inspection and Maintenance

12-1 Periodic Inspection

General Items

Inspect Item	Inspect content	Standard	Remarks
Ambient temperature	They shall be limited to the specification, the temperature inside the control panel shall equal to the ambient temperature	0-55	
Relative humidity		5-90\% RH	No Frost
Gas		No corrosive gas exists	
Vibration		None	
Impact		None	

Master

Item	Contents	Standard	Remarks
Power voltage	Check the terminal voltage to ensure that it complies with specification	AC 100-240V	SMT AC model
DC 24 V	Check the terminal voltage to ensure that it complies with specification	DC $24 \mathrm{~V} \pm 10 \%$	SMT DC model
Input power	Check the input voltage to ensure that it complies with specification	$\begin{gathered} \text { AC } 100-240 \mathrm{~V} \\ \text { DC } 10 \mathrm{~V}-26.4 \mathrm{~V} \end{gathered}$	
Output power	Check the output voltage to ensure that it complies with specification	Below 250VAC Below 30VDC	
Installation	The iSMART is firmly fixed	No loose bolts	
	Check for loose screws on the terminal lock	No loose screws	

12-2 Trouble Shooting

When there is no display, but the operation is normal, a possible LCD failure has occurred. Consult IMO for help.If there is no display and no action, after confirmation of Power Supply consult the IMO for help.

Chapter 13 Technical Specification

13-1 General Specification

Item		Specification
Method of input program		By means of Ladder / Function Block
Operation Environment	Operation temperature	0-55
	Storage temperature	-40-70
	Operation humidity	20-90\% RH, no frost
	Environmental gas	No corrosive gas exists
Mail Structure	Vibration resistance	IEC60068-2-6 standard 0.075 mm amplitude $/ 1.0 \mathrm{~g}$ acceleration
	Impact resistance	IEC60068-2-27 standard 15 g peak, 11 ms duration
Noise proofing	ESD	Contact $\pm 4 \mathrm{KV}$, air discharge $\pm 8 \mathrm{KV}$
	EFT	Power DC/AC: $\pm 2 \mathrm{KV}$
	CS	$0.15 \sim 80 \mathrm{MHz} \quad 10 \mathrm{~V} / \mathrm{m}$
	RS	$80 \sim 1000 \mathrm{MHz} \quad 10 \mathrm{~V} / \mathrm{m}$
	EMI	EN55011 class B
Installation	Enclosure Protection	IP20
	Fixing method	Direct or Din rail (35mm) installation
	Direction	No limit
Size of cable		AWG $12 / \psi 3.5 \mathrm{~mm}^{2}$
Dimension		$72 \times 90 \times 59.6 \mathrm{~mm}(\mathrm{~W} \times \mathrm{L} \times \mathrm{H})$

13-2 I/O System Specification

Power Supply Module

Module	Input/Output	
$\mathrm{DC}+12 \mathrm{~V}$	AC $100 \sim 240 \mathrm{~V} / \mathrm{DC}+12 \mathrm{~V}$	
$\mathrm{DC}+24 \mathrm{~V}$	AC $100 \sim 240 \mathrm{~V} / \mathrm{DC}+24 \mathrm{~V}$	

Optional Devices

MODE	Description
PM05	Spare Program Cartridge
Client	Computer Edition Software

13-3 Dimension Diagram

10/12 points

20 points

Expansion 8 points

Appendix Application Illustration

1. Lighting Control for Staircase

1.1 Requirement for Staircase Lighting

- When someone goes up or down-stairs, the lighting system shall be energized to provide sufficient luminance.
- After the person passes the staircase the lighting system shall be turned off in five minutes, either automatically or manually.

1.2 Traditional Lighting Control

There are two traditional controls available:

- Apply pulse relay
- Apply automatic timer to control the lighting system on the staircase

Components Applied

- Switches
- Auto lighting system or pulse relay for staircase

Applying the pulse relay as controller for staircase lighting system

- The lighting is on as long as any switch is turned on.
- Press any switch again to turn off the lighting system.

Shortcoming: It is a frequent action for the person to forget to turnoff the light at most cases.

Auto lighting control system for the staircase

- The light is on whenever the switch is turned on.
- Lighting system shall be turned off in a few minutes automatically or manually

Shortcoming: The user has no way to reset the turn-off time.

1.3 Apply iSmart in Lighting System

Devices Applied

- Q1

Lamp H1

- I1 (No terminal) Switch B1
- I2 (No terminal) Infrared sensor for climbing

Wiring Diagram for Lighting System

Illustrated program using iSmart in lighting system
Ladder :

FUNCTION :

FBD :

2 Auto Door Control

Automatic doors are very popular, installed at the entrance of supermarkets, banks and hospitals.

2.1 Requirement for Auto Door Control

- It automatically opens whenever a person is approaching.
- The door remains open for a certain period and closes if no person is present.

Action Sensor

2.2 Traditional solution

Whenever B1 or B 2 senses the approach of a visitor, the door is actuated to open. After an elapsed time, B1 or B2 senses no presence of a visitor; MC 4 will close the door.

Ladder :

FUNCTION :
$3\left\{\begin{array}{l}1 \\ 0000 \\ 0010\end{array}\right]-\mathrm{T1}$

FBD Operation Flow :

3. Ventilation Control

3.1 Ventilation System Requirement

The main function of the ventilation system is to blow in the fresh air and extract the waste air as shown in the below drawing

- The room is provided with exhausted gas blower and fresh air blower
- The flow sensor controls the air, input and extract operation.
- Over pressure is not permitted.
- The fresh air blower will run only if the flow monitor senses that the exhausted gas blower is working properly.
- If any irregularity takes place in fresh air blower or extract blower, the warning lamp will light.

The control circuit for the traditional ventilation system is shown below:

The airflow monitor controls the ventilation system. If there is no airflow in the room after a designated duration of time, the system will activate the warning system so the user can shut off the system.

Devices Applied

- MC1 main contactor
- MC2 main contactor
- S 0 (NC contact) stop switch
- S1(NO contact) start switch
- S2(NO contact) air flow monitor
- S3(NO contact) air flow monitor
- H1operation indicator
- H2 alarm light

Wiring Diagram and Program with iSmart applied in Ventilation System.

Ladder :

FUNCTION :

FBD Operation Flow :

4. Plant Gate Control

4.1 Requirements for Plant Gate Control

The main purpose of the plant gate is to control the access of vehicals, which is manually operated by the gate guard.

- The door guard controls and oversees the opening, closing of the plant door gate.
- The stop switch can be activated at any time regardless of whether the gate is fully open or in a closed condition.
- The alarm light will be activated for 5 seconds in advance before the gate begins an operation.
- A damper is fitted on the gate. In the closing operation the gate will stop if the damper makes contact with an object or gate post.
4.2 Traditional Control Circuit for Gate System

Wiring Diagram and Program with iSmart applied in Plant Gate

Ladder :

FUNCTION

$$
\left.2 \cdot \begin{array}{l}
2 \\
000.0 \\
005.0
\end{array}\right]_{\mathrm{M} 1}^{\mathrm{T} 1}
$$

FBD:

5. Counting Control for Packing Machine

5.1 Requirement for packaging machine:

1) The packing cycle begins counting the finished products in the assembly line, when the count value reaches 12 it continues the packing operation, which takes 5 seconds. After completion, it begins a new cycle.
2) It simultaneous counts the finished packs of product.
3) In case of power failure, the count remains unchanged.

Analysis :

1) A sensor is used to produce the pulse signal, when the sensor detects the arrival of a product. A counter generates an output when the count value reaches 12 a timer is used, having a delay of five seconds.
2) The counter will be operated in mode 3 or mode 4 in an effort to keep the accurate counting even in case of power failure.

Devices Applied

I1: counting sensor;
S1: reset the counting value to zero;
MC1: packing

Wiring Diagram and Program using iSmart applied for Packing Machine

Ladder :

FUNCTION :

FBD :

IMO iSmart

Operation Manual - Second Edition

IMO Precision Controls
1000 North Circular Road
Staples Corner
London, NW2 7JP
United Kingdom
T: +44 (0)20 84526444
F: +44 (0)20 84502274
www.imopc.com

IMO Jeambrun Automation SAS
Avenue du Mistral
ZI Athelia IV
13705 La Ciotat Cedex
France
T: 0442838200
F: 0442838275
www.imopc.fr

IMO Italia
Viale A
Volta 127/a
50131 Firenze
Itaia
T: 800783281
F: 800783282
www.imopc.it

