
DISCRETE CERAMICS

Supersedes data of 11th February 1999

2001 May 30 Rev.2

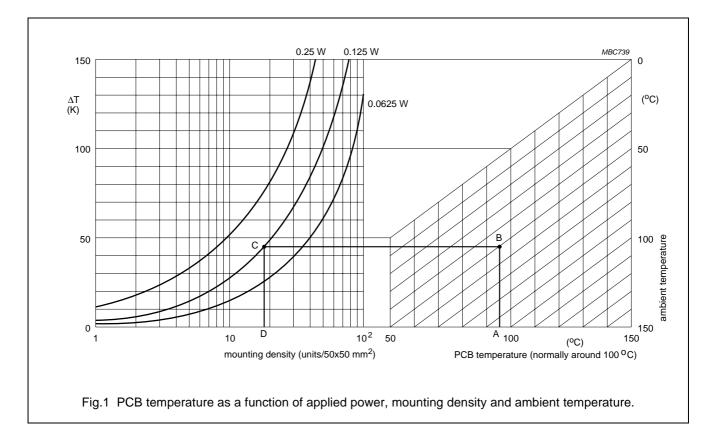
Mounting

MOUNTING

Due to their rectangular shape and small dimensional tolerances, Surface Mounted Resistors are suitable for handling by automatic placement systems. Chip placement can be on ceramic substrates and printed-circuit boards (PCBs). Electrical connection to the circuit is by wave, vapour phase or infrared soldering. The end terminations guarantee a reliable contact and the protective coating enables 'face down' mounting.

The temperature rise in a resistor due to power dissipation, is determined by the laws of heat - conduction, convection and radiation. The maximum body temperature usually occurs in the middle of the resistor and is called the **hot-spot** temperature.

The hot-spot temperature depends on the ambient temperature and the dissipated power. This is described in the data sheets under the chapter heading "Functional description".


The hot-spot temperature is important for mounting because the connections to the chip resistors will reach a temperature close to the hot-spot temperature. Heat conducted by the connections must not reach the melting point of the solder at the joints. Therefore a maximum solder joint temperature of 110 °C is advised.

The ambient temperature on large or very dense printed-circuit boards (PCBs) is influenced by the dissipated power. The ambient temperature will again influence the hot-spot temperature. Therefore, the packing density that is allowed on the PCB is influenced by the dissipated power.

Example of mounting effects

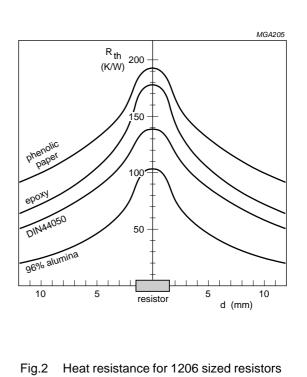
Assume that the maximum temperature of a PCB is 95 °C and the ambient temperature is 50 °C. In this case the maximum temperature rise that may be allowed is 45 °C. In the graph (see Fig.1), this point is found by drawing the line from point A (PCB = 95 °C) to point B ($T_{amb} = 50$ °C) and from here to the left axis.

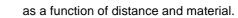
To find the maximum packing density, this horizontal line is extended until it intersects with the curve, 0.125 W (point C). The maximum packing density, 19 units/50 \times 50 mm² (point D), is found on the horizontal axis.

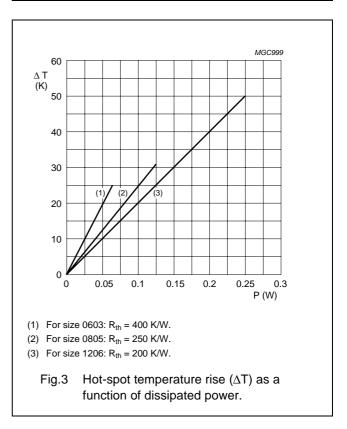
Mounting

Thermal resistance (R_{th})

Thermal resistance prohibits the release of heat generated within the resistor to the surrounding environment. It is expressed in K/W and defines the surface temperature (T_{HS}) of the resistor in relation to the ambient temperature (T_{amb}) and the load (P) of the resistor, as follows:

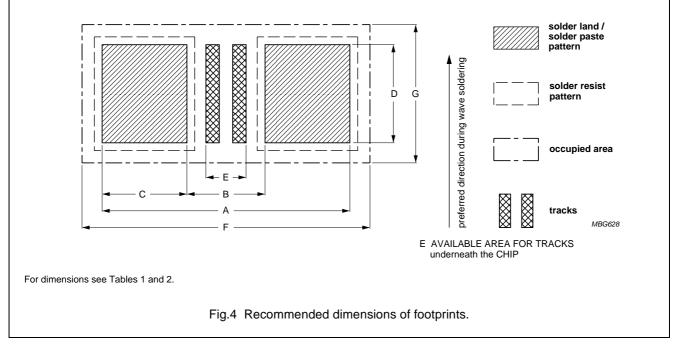

 $T_{HS} = T_{amb} + P \times R_{th}$


Due to their direct contact with the solder spot, chip resistors dissipate over 85% of their heat via conduction to the solder spot and hence to the PCB. Thus the PCB on which the chip resistor is mounted functions as a heat sink. Different PCBs have different heat conductance. Figure 2 shows the different values of heat resistance per material type. Substrates with a higher heat conductance give lower thermal resistance figures; substrates with a lower heat conductance give higher thermal resistance figures.


It should be noted that the temperature of the terminations of the chip resistor is virtually the same as the hot-spot temperature. Therefore the power that may be dissipated by the resistor is dependent on:

 T_{amb} (which is also dependent on the packing density) R_{th} of the PCB

maximum solder spot temperature (generally 110 °C).

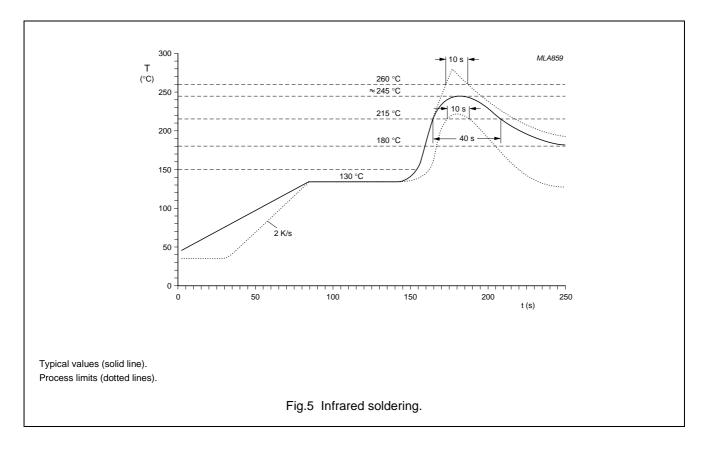


Mounting

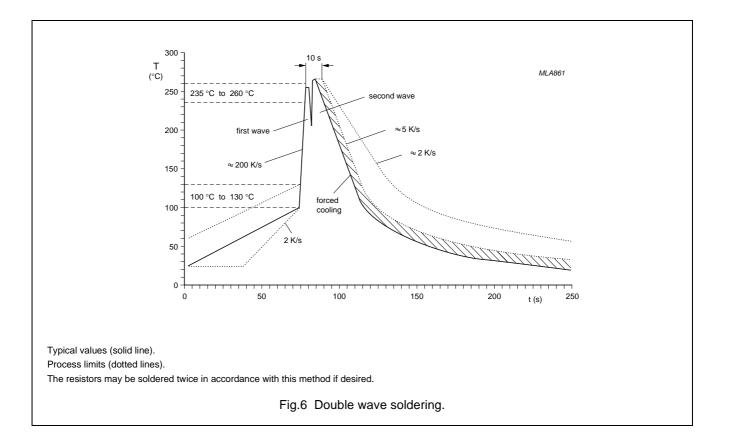
FOOTPRINT DIMENSIONS

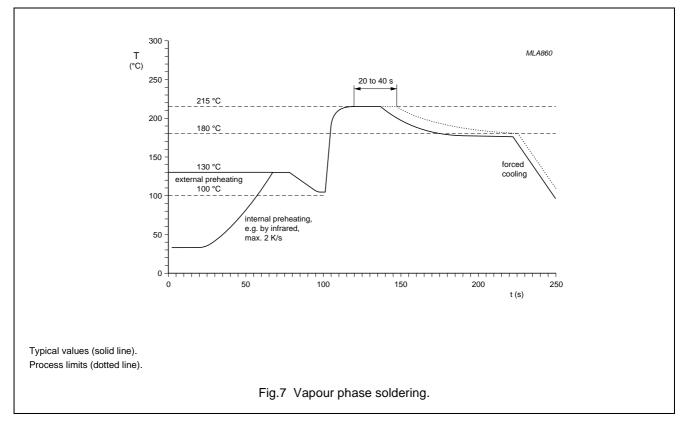
Table 1	Reflow soldering; for dimensions see also Fig.4
---------	---

SIZE		FOO	TPRINT	DIMEN	SIONS	(mm)		PLACEMENT	
CODE	Α	В	С	D	Е	F	G	PROCESSING REMARKS	ACCURACY (mm)
0402	1.5	0.5	0.5	0.6	0.1	1.9	1.0		±0.15
0603	2.1	0.5	0.8	0.9	0.0	2.5	1.7		±0.25
0805	2.6	0.9	0.85	1.4	0.5	3.0	2.1	IR or hot plate soldering	±0.25
1206	3.8	2.0	0.9	1.8	1.4	4.2	2.5		±0.25
1218	3.8	2.0	0.9	1.8	1.4	4.2	2.5		±0.25
2010	5.6	3.8	0.9	2.8	3.4	5.85	3.15		±0.25
2512	7.0	3.8	1.6	3.5	3.4	7.25	3.85		±0.25


Table 2	Wave soldering	(no dumm	v tracks allowed for the hi	ah voltage series); for dimensions see also Fig.4

SIZE		FOO	TPRINT	DIMEN	SIONS	(mm)	PROPOSED NUMBER AND	PLACEMENT	
CODE	Α	В	С	D	Е	F G	DIMENSIONS OF DUMMY TRACKS (mm)	ACCURACY (mm)	
0603	2.7	0.9	0.9	0.8	0.15	3.2	1.9	$1 \times (0.15 \times 0.8)$	±0.25
0805	3.3	1.3	1.0	1.3	0.34	3.9	2.4	1 × (0.3 × 1.3)	±0.25
1206	4.5	2.5	1.0	1.7	1.25	3.9	2.4	3 × (0.25 × 1.7)	±0.25
1218	4.5	2.5	1.0	1.7	1.25	4.6	3.6	-	±0.25
2010	6.3	4.3	1.0	2.5	3.00	7.0	3.6	-	±0.25
2512	7.7	5.7	1.0	3.2	3.00	8.4	4.3	-	±0.25


SOLDERING CONDITIONS


The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260 °C for one minute. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235 °C during 2 seconds. The test condition for no leaching is 260 °C for 60 seconds. Typical examples of soldering processes that provide reliable joints without any damage, are given in Figs 5, 6 and 7.

Mounting

REVISION HISTORY

Revision	Date	Change Notification	Description
Rev.2	2001 May 30	-	- Converted to Phycomp brand