
FEATURES

- Industrial grade
- 0.5 W at 70 °C
- Cermet element
- Miniature compact
- Plastic housing and shaft
- Fully sealed
- 7 standard pin styles
- Test according to CECC 41000 or IEC 60393-1
- 10 000 cycles rotational life
- Compliant to RoHS Directive 2002/95/EC

P10 panel potentiometer combines the very good setting stability offered by Vishay Sfernice trimmers (due to their proprietary multifinger wiper), with a mechanical life of

10 000 cycles. It is an ideal choice to set and control parameters such as temperature, time, volume levels, etc.

VISHAY,

Vishay Sfernice

3/8" Square Panel Potentiometer Miniature - Cermet - Fully Sealed

ELECTRICAL SPECIFICATIONS							
Resistive Element			Ce	ermet			
Electrical Travel		250° ± 15°					
Standard Resistance Values			100 Ω	to 2 MΩ			
Tolerance			10 % - 5 %	% on request			
	Linear A						
Taper							
Power Rating	0.5 W a	0.5 W at 70 °C					
Circuit Diagram		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $					
		Standard Resistance Values	Max. Power at 70 °C	Max. Working Voltage	Max. Cur. Through Wiper		
		W	W	V	mA		
		100	0.5	7.0	70		
		200 500	0.5 0.5	10.0 15.8	50 32		
		1K	0.5	22.4	22		
		2K	0.5	31.8	16		
Standard Resistance Element Data		5K	0.5	50.0	10		
		10K	0.5	70.7	7.0		
		20K	0.5	100	5.0		
		50K	0.5	158	3.2		
		100K	0.5	224	2.2		
		200K 500K	0.28 0.13	250 250	1.3 0.5		
		1M	0.06	250	0.25		
		2M	0.028	250	0.13		
Temperature Coefficient (Typical)	<u> </u>			ppm/°C			
Contact Desistance Variation (Turiaci)		1 % Rn or 2 Ω					
				10			
End Resistance (Typical)				1Ω 100.V			
Contact Resistance Variation (Typical) End Resistance (Typical) Dielectric Strength (RMS) Insulation Resistance (300 V _{DC})			10	1 Ω 00 V ⁶ MΩ			

www.vishay.com 2

3/8" Square Panel Potentiometer Miniature - Cermet - Fully Sealed

MECHANICAL SPECIFICATIONS						
Mechanical Travel	290° ± 5					
Operating Torque (Typical)	2 Ncm max. 2.83 ozinch max.					
End Stop Torque	7 Ncm max.	9.9 ozinch max.				
Tightening Torque of Mounting Nut	25 Ncm max.	2.2 lb-inch max.				
Unit Weight	1 g	3.5 10 ⁻² oz.				
Terminals	e3: Pure Sn					
Shafts	Standard shaft 20 mm length (R or Al code) and 16 mm length (D or AG code) is measured from the mounting face to the free end of the shaft. Vishay guarantee is lost if the customer modifies the shaft himself.					
Hardware	Nuts and washer are supplied seperately (not mounted on the potentiometer) in a small bag placed in the packaging.					

ENVIRONMENTAL SPECIFICATIONS				
Temperature Range	- 55 °C to 125 °C			
Climatic Category	55/100/56			
Sealing	Fully sealed - Container IP67			

MARKING				
 Vishay trademark 	The ohmic value is indicated by a 3 figures code: The first two digits are significant figures,			
Model	the third digit is the multiplier:			
Ohmic value code	Example: $101 = 100 \Omega$			
	102 = 1000 Ω			
Tolerance code	$503 = 50\ 000\ \Omega$			
 Manufacturing date code 	The manufacturing date is indicated by a figures code. The first two digits are the year, the			
Marking of terminals 3	last two digits are the week.			

Vishay Sfernice

3/8" Square Panel Potentiometer Miniature - Cermet - Fully Sealed

PERFORMANCES							
		TYPICAL VALUES AND DRIFTS					
TESTS	CONDITIONS -	∆ <i>R</i> _T / <i>R</i> _T (%)	$\Delta R_{1-2}/R_{1-2}$ (%)	OTHER			
Electrical Endurance	1000 h at rated power 90'/30' - ambient temp. 70 °C	±1%	±2%	Contact resistance variation: 1 %			
Climatic Sequence	Phase A dry heat 100 °C Phase B damp heat Phase C cold - 55 °C Phase D damp heat 5 cycles	± 1 %	± 2 %	-			
Damp Heat, Steady State 56 days 40 °C 93 % HR		± 1 %	± 2 %	Dielectric strength: $1000 V_{RMS}$ Insulation resistance: $> 10^4 M\Omega$			
Change of Temperature 5 cycles - 55 °C at 100 °C		±1%	-	$\Delta V_{1-2}/V_{1-3} \le \pm 2\%$			
Mechanical Endurance	10 000 cycles	± 3 %	-	Contact resistance variation: \leq 2 % R _n			
50 g's at 11 msShock3 successive shocksin 3 directions		± 0.5 %	± 1 %	-			
Vibration10 Hz to 55 Hz0.75 mm or 10 g's during 6 h		± 0.5 %	-	$\Delta V_{1-2}/V_{1-3} < \pm 1 \%$			

ORDERING INFORMATION (Part Number)								
P 1	0 X	X A G	1 0 3	КВ	3 0			
MODEL	STYLE	SHAFT	RESISTANCE CODE	TOLERANCE CODE	PACKAGING CODE	SPECIAL NUMBER		
P10	XC	AG = Ø 3 mm	From	K = 10 %	B30 = Box 100 pieces	(If applicable)		
	XH XW	to 16 mm (old code R)	100 Ω to 2 MΩ 103 = 10 kΩ	On request:		Given by Vishay		
	XX	AI = Ø 3 mm		J = 5 %		for custom		
	YE	to 20 mm				design		
	YM YP	(old code D)						

PART NUMBER DESCRIPTION (for information only)							
P10	ХХ	AG	10K	10 %		BO100	e3
MODEL	STYLE	SHAFT	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD (Pb)-FREE

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.