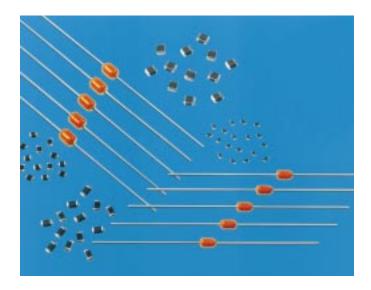
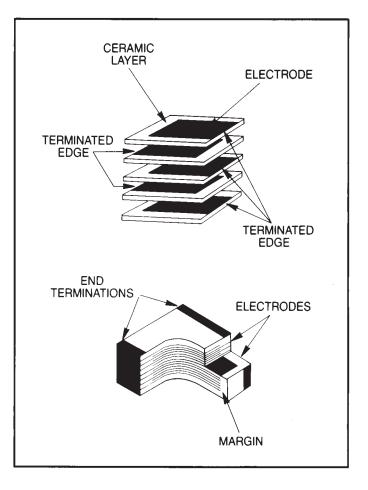
# TransGuard<sup>®</sup> AVX Multilayer Ceramic Transient Voltage Suppressors

### **GENERAL DESCRIPTION**

The AVX TransGuard<sup>®</sup> Transient Voltage Suppressors (TVS) with unique high-energy multilayer construction represents state-of-the-art overvoltage circuit protection. Monolithic multilayer construction provides protection from voltage transients caused by ESD, lightning, NEMP, inductive switching, etc. True surface mount product is provided in EIA industry standard packages. Thru-hole components are supplied as conformally coated axial devices.


### **TRANSGUARD® DESCRIPTION**


TransGuard<sup>®</sup> products are zinc oxide (ZnO) based ceramic semiconductor devices with non-linear voltage-current characteristics (bi-directional) similar to back-to-back zener diodes. They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor-like behavior.

The number of grain-boundary interfaces between conducting electrodes determines "Breakdown Voltage" of the device. High voltage applications such as AC line protection require many grains between electrodes while low voltage requires few grains to establish the appropriate breakdown voltage. Single layer ceramic disc processing proved to be a viable production method for thick cross section devices with many grains, but attempts to address low voltage suppression needs by processing single layer ceramic disc formulations with huge grain sites has had limited success.

AVX, the world leader in the manufacture of multilayer ceramic capacitors, now offers the low voltage transient protection marketplace a true multilayer, monolithic surface mount varistor. Technology leadership in processing thin dielectric materials and patented processes for precise ceramic grain growth have yielded superior energy dissipation in the smallest size. Now a varistor has voltage characteristics determined by design and not just cell sorting whatever falls out of the process.

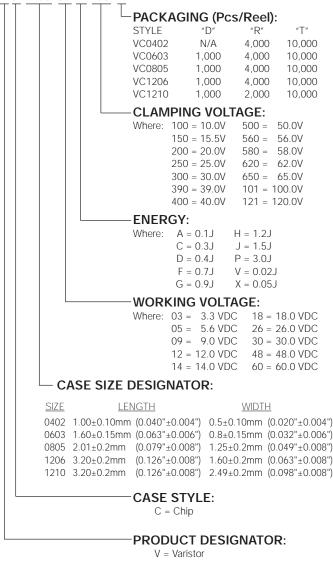
Multilayer ceramic varistors are manufactured by mixing ceramic powder in an organic binder (slurry) and casting it into thin layers of precision thickness. Metal electrodes are deposited onto the green ceramic layers which are then stacked to form a laminated structure. The metal electrodes are arranged so that their terminations alternate from one end of the varistor to the other. The device becomes a monolithic block during the sintering (firing) cycle providing uniform energy dissipation in a small volume.







## **AVX Multilayer Ceramic Transient Voltage Suppressors**


## PART NUMBER IDENTIFICATION

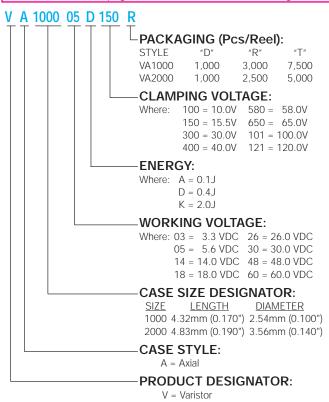
#### Surface Mount Devices

#### Important: For part number identification only, not for construction of part numbers.

The information below only defines the numerical value of part number digits, and cannot be used to construct a desired set of electrical limits. Please refer to the TransGuard® part number data (blue section, pages 3-8) for the correct electrical ratings.

#### VC 1206 05 D 150 R




#### MARKING:

All standard surface mount TransGuard<sup>®</sup> chips will **not** be marked. Marked chips will be considered a special; contact factory for minimum order requirement and price adder.

#### Axial Leaded Devices

#### Important: For part number identification only, not for construction of part numbers.

The information below only defines the numerical value of part number digits, and cannot be used to construct a desired set of electrical limits. Please refer to the TransGuard<sup>®</sup> part number data (blue section, page 9) for the correct electrical ratings.



#### MARKING:

All axial TransGuards<sup>®</sup> are marked with vendor identification, product identification, voltage/energy rating code and date code (see example below):

| AVX |  |
|-----|--|
| TVS |  |
| 05D |  |
| 025 |  |
| 1   |  |

Where: AVX = Always AVX (Vendor Identification) TVS = Always TVS (Product Identification - Transient Voltage Suppressor) 05D = Working VDC and Energy Rating (Joules) Where: 05 = 5.6 VDC, D = 0.4J

025 = Three Digit Date Code

Where: 0 = Last digit of year (2000) 25 = Week of year





## **AVX Multilayer Ceramic Transient Voltage Suppressors**

### VOLTAGES = 5.6, 9, 14 OR 18 VDC 0402 SURFACE MOUNT

**Dimensions:** 

#### Actual Size:

| Length                 | 1.0 ± 0.10mm (0.040" ± 0.004")  |
|------------------------|---------------------------------|
| Width                  | 0.5 ± 0.10mm (0.020" ± 0.004")  |
| Thickness              | 0.6mm Max. (0.024")             |
| Termination Band Width | 0.25 ± 0.15mm (0.010" ± 0.006") |
| Termination Separation | 0.3mm Min. (0.012")             |
| Termination Finish     | Pt/Pd/Ag                        |
|                        |                                 |

| AVX<br>Part Number | Working<br>Voltage                                         | Breakdown<br>Voltage | Clamping<br>Voltage | Peak<br>Current | Transient<br>Energy | Capacitance        | Inductance       |  |
|--------------------|------------------------------------------------------------|----------------------|---------------------|-----------------|---------------------|--------------------|------------------|--|
| Symbol             | V <sub>wm</sub>                                            | V <sub>B</sub>       | V <sub>c</sub>      | $I_{peak}$      | E <sub>trans</sub>  | С                  | L                |  |
| Units              | Volts<br>(max.)                                            | Volts                | Volts<br>(max.)     | Amp<br>(max.)   | Joules<br>(max.)    | pF<br>(typ.)       | nH<br>(typ.)     |  |
| Test Condition     | <50µA                                                      | 1mA DC               | 8/20µS†             | 8/20µs          | 10/1000µS           | 0.5Vrms @:<br>1MHz | di/dt = 100mA/nS |  |
| VC040205X150       | 5.6                                                        | 7.6 - 9.3            | 15.5                | 20              | 0.05                | 360                | <1.0             |  |
| VC040209X200       | 9.0                                                        | 11.0 - 14.0          | 20.0                | 20              | 0.05                | 230                | <1.0             |  |
| VC040214X300       | 14.0                                                       | 16.5 - 20.3          | 30.0                | 20              | 0.05                | 120                | <1.0             |  |
| VC040218X400       | 18.0                                                       | 22.9 - 28.0          | 40.0                | 20              | 0.05                | 90                 | <1.0             |  |
| VC04LC18V500       | See pages 14-15 for specification and performance details. |                      |                     |                 |                     |                    |                  |  |

 $V_{wm}$ —Maximum steady-state DC operating voltage the varistor can maintain and not exceed 50µA leakage current  $V_{B}$ —Voltage across the device measured at 1mA DC current  $V_{C}$ —Maximum peak voltage across the varistor measured at a specified pulse current and waveform

†Transient Energy Rating <0.05 Joule Pulse Current & Waveform 1A 8/20µS

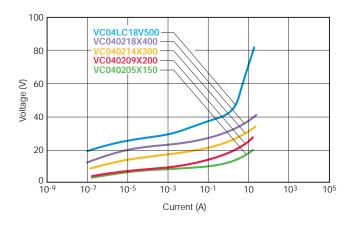
Inexk—Maximum peak current which may be applied with the specified waveform without device failure

E<sub>tran</sub>—Maximum energy which may be dissipated with the specified waveform without device failure

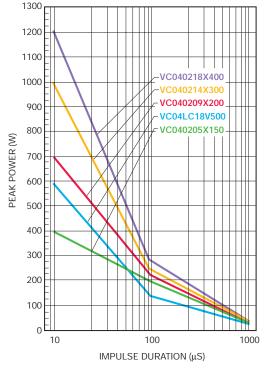
C—Device capacitance measured with zero volt bias 0.5Vrms and 1MHz

L—Device inductance measured with a current edge rate of 100 mA/nS

**Dimensions: Millimeters (Inches)** 



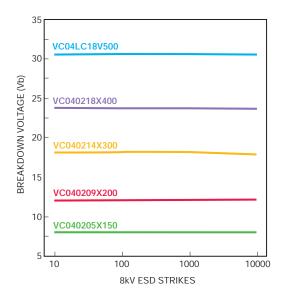

## **AVX Multilayer Ceramic Transient Voltage Suppressors**


### **TYPICAL PERFORMANCE CURVES (0402 CHIP SIZE)**

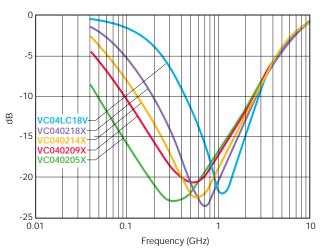
#### **VOLTAGE/CURRENT CHARACTERISTICS**

Multilayer construction and improved grain structure result in excellent transient clamping characteristics up to 20 amps peak current, while maintaining very low leakage currents under DC operating conditions. The VI curves below show the voltage/current characteristics for the 5.6V, 9V, 14V, 18V and low capacitance StaticGuard parts with currents ranging from parts of a micro amp to tens of amps.




### PEAK POWER VS PULSE DURATION




#### PULSE DEGRADATION

Traditionally varistors have suffered degradation of electrical performance with repeated high current pulses resulting in decreased breakdown voltage and increased leakage current. It has been suggested that irregular intergranular boundaries and bulk material result in restricted current paths and other non-Schottky barrier paralleled conduction paths in the ceramic. Repeated pulsing of TransGuard transient voltage suppressors with 150Amp peak 8 x 20µS waveforms shows negligible degradation in breakdown voltage and minimal increases in leakage current. This does not mean that TransGuard suppressors do not suffer degradation, but it occurs at much higher current.

#### ESD TEST OF 0402 PARTS



### **INSERTION LOSS CHARACTERISTICS**



# TransGuard®



**AVX Multilayer Ceramic Transient Voltage Suppressors** 

## VOLTAGES = 3.3, 5.6, 9, 14, 18, 26 OR 30 VDC 0603 SURFACE MOUNT

**Dimensions:** 

#### Actual Size: Length Width Thickness Termination Band Width Termination Separation Termination Finish

1.6 ± 0.15mm (0.063" ± 0.006") 0.50 ± 0.15mm (0.032" ± 0.006") 0.9mm Max. (0.035") 0.35 ± 0.15mm (0.014" ± 0.006") 0.7mm Min. (0.028") Pt/Pd/Ag

| AVX<br>Part Number                                                      | Working<br>Voltage | Breakdown<br>Voltage | Clamping<br>Voltage | Peak<br>Current   | Transient<br>Energy | Сарас        | itance | Inductance       |
|-------------------------------------------------------------------------|--------------------|----------------------|---------------------|-------------------|---------------------|--------------|--------|------------------|
| Symbol                                                                  | V <sub>WM</sub>    | V <sub>B</sub>       | V <sub>c</sub>      | I <sub>peak</sub> | E <sub>trans</sub>  | (            | C      | L                |
| Units                                                                   | Volts<br>(max.)    | Volts                | Volts<br>(max.)     | Amp<br>(max.)     | Joules<br>(max.)    | pF<br>(typ.) |        | nH<br>(typ.)     |
| Test Condition                                                          | ~5001              | 1mA DC               | 8/20µS†             | 8/20µs            | 10/1000µS           | 0.5Vrms @:   |        | di/dt 100mA/nC   |
| Test Condition                                                          | <50µA              |                      | 0/20µ31             | 0/20µS            | 10/1000μ3           | 1kHz         | 1 MHz  | di/dt = 100mA/nS |
| VC060303A100                                                            | 3.3#               | 4.1 - 6.0            | 10                  | 30                | 0.1                 | 1800         | 1230   | <1.0             |
| VC060305A150                                                            | 5.6                | 7.6 - 9.3            | 15.5                | 30                | 0.1                 | 1000         | 825    | <1.0             |
| VC060309A200                                                            | 9.0                | 11.0 - 15.0          | 20                  | 30                | 0.1                 | 650          | 550    | <1.0             |
| VC060314A300                                                            | 14.0               | 16.5 - 20.3          | 30                  | 30                | 0.1                 | 500          | 424    | <1.0             |
| VC060318A400                                                            | 18.0               | 22.9 - 28.0          | 40                  | 30                | 0.1                 | 275          | 225    | <1.0             |
| VC060326A580                                                            | 26.0               | 31.0 - 38.0          | 58                  | 30                | 0.1                 | 200          | 160    | <1.0             |
| VC060330A650                                                            | 30.0               | 37.0 - 46.0          | 65                  | 30                | 0.1                 | 175          | 150    | <1.0             |
| VC06LC18X500 See pages 14-15 for specification and performance details. |                    |                      |                     |                   |                     |              |        |                  |

 $V_{\rm WM}$ —Maximum steady-state DC operating voltage the varistor can maintain and not exceed 50µA leakage current  $V_{\rm B}$ —Voltage across the device measured at 1mA DC current

V<sub>c</sub>—Maximum peak voltage across the varistor measured at a specified pulse current and waveform †Transient Energy Rating Pulse Current & Waveform

Puise Current & Wa 2A 8/20uS

I<sub>peak</sub>—Maximum peak current which may be applied with the specified waveform without device failure

E<sub>tran</sub>—Maximum energy which may be dissipated with the specified waveform without device failure

C—Device capacitance measured with zero volt bias 0.5Vrms and 1kHz

0.1 Joule

L—Device inductance measured with a current edge rate of 100 mA/nS

Dimensions: Millimeters (Inches)

#Test condition <100µA



### **AVX Multilayer Ceramic Transient Voltage Suppressors**

Ē

#### VOLTAGES = 3.3, 5.6, 9, 12, 14, 18, 26 OR 30 VDC **0805 SURFACE MOUNT**

**Dimensions:** 

Actual Size: Length Width Thickness Land Length Termination Finish

2.01 ± 0.2mm (0.079" ± 0.008") 1.25 ± 0.2mm (0.049" ± 0.008") 1.02mm Max. (0.040") 0.71mm Max. (0.028") Pt/Pd/Ag

| AVX<br>Part Number | Working<br>Voltage                                         | Breakdown<br>Voltage | Clamping<br>Voltage | Peak<br>Current   | Transient<br>Energy | Сарас        | itance | Inductance       |
|--------------------|------------------------------------------------------------|----------------------|---------------------|-------------------|---------------------|--------------|--------|------------------|
| Symbol             | V <sub>wm</sub>                                            | V <sub>B</sub>       | Vc                  | I <sub>peak</sub> | E <sub>trans</sub>  | С            |        | L                |
| Units              | Volts<br>(max.)                                            | Volts                | Volts<br>(max.)     | Amp<br>(max.)     | Joules<br>(max.)    | pF<br>(typ.) |        | nH<br>(typ.)     |
| Test Condition     | <50µA                                                      | 1mA DC               | 8/20µS†             | 8/20µs            | 10/1000µS           | 0.5Vrms @:   |        | di/dt = 100mA/nS |
|                    | <30μΑ                                                      | IIIA DC              | 0/20µ31             | 0/20µ3            | 10/1000µ3           | 1kHz         | 1 MHz  |                  |
| VC080503A100       | 3.3#                                                       | 4.1 - 6.0            | 10                  | 40                | 0.1                 | 1300         | 930    | <1.5             |
| VC080503C100       | 3.3#                                                       | 3.7 - 5.6            | 10                  | 120               | 0.3                 | 5500         | 4000   | 1.5              |
| VC080505A150       | 5.6                                                        | 7.6 - 9.3            | 15.5                | 40                | 0.1                 | 1250         | 860    | <1.5             |
| VC080505C150       | 5.6                                                        | 7.1 - 8.7            | 15.5                | 120               | 0.3                 | 3500         | 2400   | 1.5              |
| VC080509A200       | 9                                                          | 11.0 - 14.0          | 20                  | 40                | 0.1                 | 780          | 585    | <1.5             |
| VC080512A250       | 12                                                         | 14.0 - 18.3          | 25                  | 40                | 0.1                 | 525          | 400    | <1.5             |
| VC080514A300       | 14                                                         | 16.5 - 20.3          | 30                  | 40                | 0.1                 | 375          | 280    | <1.5             |
| VC080514C300       | 14                                                         | 15.9 - 19.4          | 30                  | 120               | 0.3                 | 1100         | 820    | 1.5              |
| VC080518A400       | 18*                                                        | 22.9 - 28.0          | 40                  | 30                | 0.1                 | 350          | 275    | <1.5             |
| VC080518C400       | 18*                                                        | 22.5 - 27.5          | 40                  | 100               | 0.3                 | 650          | 500    | 1.5              |
| VC080526A580       | 26                                                         | 31.0 - 37.9          | 58                  | 30                | 0.1                 | 140          | 110    | <1.5             |
| VC080526C580       | 26                                                         | 30.5 - 37.3          | 58                  | 100               | 0.3                 | 250          | 190    | 1.5              |
| VC080530A650       | 30                                                         | 37.0 - 46.0          | 65                  | 30                | 0.1                 | 100          | 80     | <1.5             |
| VC08LC18A500       | See pages 14-15 for specification and performance details. |                      |                     |                   |                     |              |        |                  |

 $V_{_{VM}}$ —Maximum steady-state DC operating voltage the varistor can maintain and not exceed 50µA leakage current  $V_{_{B}}$ —Voltage across the device measured at 1mA DC current  $V_{_{C}}$ —Maximum peak voltage across the varistor measured at a specified pulse current and waveform

†Transient Energy Rating Pulse Current & Waveform 2A 8/20µS 0.1 Joule 0.2 - 0.3 Joules 5A 8/20µS

I<sub>seak</sub>—Maximum peak current which may be applied with the specified waveform without device failure

Etran-Maximum energy which may be dissipated with the specified waveform without device failure

C—Device capacitance measured with zero volt bias 0.5Vrms and 1kHz

L—Device inductance measured with a current edge rate of 100 mA/nS

\*Withstands 24.5 VDC for 5 minutes (automotive applications)

Dimensions: Millimeters (Inches)

#Test condition <100µA





### **AVX Multilayer Ceramic Transient Voltage Suppressors**

#### VOLTAGES = 3.3, 5.6, 14, 18, 26, 30 OR 48 VDC **1206 SURFACE MOUNT**

**Dimensions:** 

Actual Size: Length Width Thickness Land Length **Termination Finish** 

 $3.20 \pm 0.2$ mm (0.126"  $\pm 0.008$ ")  $1.60 \pm 0.2$ mm (0.063"  $\pm 0.008$ ") 1.02mm Max. (0.040") 0.71mm Max. (0.028") Pt/Pd/Ag0

| AVX<br>Part Number    | Working<br>Voltage                                                  | Breakdown<br>Voltage | Clamping<br>Voltage | Peak<br>Current   | Transient<br>Energy | Сарас        | itance | Inductance       |
|-----------------------|---------------------------------------------------------------------|----------------------|---------------------|-------------------|---------------------|--------------|--------|------------------|
| Symbol                | V <sub>wm</sub>                                                     | V <sub>B</sub>       | V <sub>c</sub>      | I <sub>peak</sub> | E <sub>trans</sub>  | С            |        | L                |
| Units Volts<br>(max.) |                                                                     | Volts                | Volts<br>(max.)     | Amp<br>(max.)     | Joules<br>(max.)    | pF<br>(typ.) |        | nH<br>(typ.)     |
| Test Condition        | <50µA                                                               | 1mA DC               | 8/20µS†             | 8/20µs            | 10/1000µS           | 0.5Vrms @:   |        | di/dt 100m A/-C  |
| Test Condition        | <50µA                                                               | IIIA DC              | 0/20µ31             | 8/20µs            | 10/1000μ5           | 1kHz         | 1 MHz  | di/dt = 100mA/nS |
| VC120603A100          | 3.3#                                                                | 4.1 - 6.0            | 10                  | 40                | 0.1                 | 2000         | 1500   | <1.7             |
| VC120603D100          | 3.3#                                                                | 3.7 - 5.6            | 10                  | 150               | 0.4                 | 4700         | 3800   | 1.7              |
| VC120605A150          | 5.6                                                                 | 7.6 - 9.3            | 15.5                | 40                | 0.1                 | 1200         | 870    | <1.7             |
| VC120605D150          | 5.6                                                                 | 7.1 - 8.7            | 15.5                | 150               | 0.4                 | 3000         | 2300   | 1.7              |
| VC120614A300          | 14                                                                  | 16.5 - 20.3          | 30                  | 40                | 0.1                 | 600          | 500    | <1.7             |
| VC120614D300          | 14                                                                  | 15.9 - 19.4          | 30                  | 150               | 0.4                 | 1200         | 900    | 1.7              |
| VC120618A400          | 18*                                                                 | 22.9 - 28.0          | 40                  | 30                | 0.1                 | 350          | 270    | <1.7             |
| VC120618D400          | 18*                                                                 | 22.5 - 27.5          | 40                  | 150               | 0.4                 | 800          | 635    | 1.7              |
| VC120626D580          | 26                                                                  | 30.5 - 37.3          | 58                  | 120               | 0.4                 | 550          | 450    | 1.7              |
| VC120630D650          | 30                                                                  | 36.0 - 45.0          | 65                  | 120               | 0.4                 | 500          | 400    | 1.7              |
| VC120648D101          | 48                                                                  | 56.0 - 68.0          | 100                 | 100               | 0.4                 | 225          | 185    | 1.7              |
| VC12LC18A500          | LC18A500 See pages 14-15 for specification and performance details. |                      |                     |                   |                     |              |        |                  |

 $V_{_{VM}}$ —Maximum steady-state DC operating voltage the varistor can maintain and not exceed 50µA leakage current  $V_{_{B}}$ —Voltage across the device measured at 1mA DC current  $V_{_{C}}$ —Maximum peak voltage across the varistor measured at a specified pulse current and waveform

†Transient Energy Rating 0.1 Joule ≥0.4 Joules

Pulse Current & Waveform 2A 8/20µS 10A 8/20µS

Iner Maximum peak current which may be applied with the specified waveform without excessive leakage

E<sub>tran</sub>—Maximum energy which may be dissipated with the specified waveform without device failure

C—Device capacitance measured with zero volt bias 0.5Vrms and 1kHz

L—Device inductance measured with a current edge rate of 100 mA/nS

\*Withstands 24.5 VDC for 5 minutes (automotive applications)

Dimensions: Millimeters (Inches)

#Test condition <100µA





### **AVX Multilayer Ceramic Transient Voltage Suppressors**

### VOLTAGES = 18, 26, 30, 48 OR 60 VDC **1210 SURFACE MOUNT**

**Dimensions:** 

Actual Size: Length Width Thickness Land Length **Termination Finish** 

3.20 ± 0.2mm (0.126" ± 0.008") 2.49 ± 0.2mm (0.098" ± 0.008") 1.70mm Max. (0.067") 0.71mm Max. (0.028") Pt/Pd/Ag

| AVX<br>Part Number | Working<br>Voltage | Breakdown<br>Voltage | Clamping<br>Voltage | Peak<br>Current  | Transient<br>Energy | Capacitance  |       | Inductance       |
|--------------------|--------------------|----------------------|---------------------|------------------|---------------------|--------------|-------|------------------|
| Symbol             | V <sub>wm</sub>    | V <sub>B</sub>       | V <sub>c</sub>      | <sub>peak</sub>  | E <sub>trans</sub>  | С            |       | L                |
| Units              | Volts<br>(max.)    | Volts                | Volts<br>(max.)     | Amp<br>(max.)    | Joules<br>(max.)    | pF<br>(typ.) |       | nH<br>(typ.)     |
| Test Condition     | <50µA              | 1mA DC               | 8/20µS†             | 8/20µs 10/1000µS | 10/1000µS           | 0.5Vrms @:   |       | di/dt = 100mA/nS |
|                    | νοομπ              |                      | 0/20001             | 0/2043           | 10/1000μ0           | 1kHz         | 1 MHz |                  |
| VC121018J390       | 18*                | 21.5 - 26.5          | 39                  | 500              | 1.5                 | 3100         | 2400  | 2.0              |
| VC121026H560       | 26                 | 29.7 - 36.3          | 56                  | 300              | 1.2                 | 2150         | 1675  | 2.0              |
| VC121030G620       | 30                 | 35.0 - 43.0          | 62                  | 220              | 0.9                 | 1900         | 1530  | 2.0              |
| VC121030H620       | 30                 | 35.0 - 43.0          | 62                  | 280              | 1.2                 | 1975         | 1575  | 2.0              |
| VC121048G101       | 48                 | 54.5 - 66.5          | 100                 | 220              | 0.9                 | 500          | 430   | 2.0              |
| VC121048H101       | 48                 | 54.5 - 66.5          | 100                 | 250              | 1.2                 | 525          | 450   | 2.0              |
| VC121060J121       | 60                 | 67.0 - 83.0          | 120                 | 250              | 1.5                 | 450          | 375   | 2.0              |

 $\square$ 

 $V_{WM}$ —Maximum steady-state DC operating voltage the varistor can maintain and not exceed 50µA leakage current  $V_{B}$ —Voltage across the device measured at 1mA DC current  $V_{c}$ —Maximum peak voltage across the varistor measured at a specified pulse current and waveform

Pulse Current & Waveform †Transient Energy Rating 10A 8/20µS

≥0.4 Joules

I<sub>ceak</sub>—Maximum peak current which may be applied with the specified waveform without device failure

Etran-Maximum energy which may be dissipated with the specified waveform without device failure

C—Device capacitance measured with zero volt bias 0.5Vrms and 1kHz

L—Device inductance measured with a current edge rate of 100 mA/nS

\*Withstands 24.5 VDC for 5 minutes (automotive applications)

**Dimensions: Millimeters (Inches)** 

#