

Preliminary Technical Data

FEATURES

Very low offset voltage: 125 µV maximum Supply current: 250 µA maximum Input bias current: 200 pA maximum Low input offset voltage drift: 0.5 µV/°C Very low voltage noise: 11 nV/√Hz Operating temperature: -40°C to +125°C Rail-to-rail output swing ±2.5 V to ±18 V operation

APPLICATIONS

Portable precision instrumentation Laser diode control loops Strain gage amplifiers Medical instrumentation Thermocouple amplifiers

Quad, Low Power, Precision Rail-to-Rail Output Op Amp

AD8624

PIN CONFIGURATIONS

GENERAL DESCRIPTION

The AD8624 is a quad, precision rail-to-rail output operational amplifier with a low supply current of only 350 μ A maximum over temperature and supply voltages. It offers low offset, drift, and voltage noise combined with very low input bias currents over the full operating temperature range.

With typical offset voltage of only 10 μ V, offset drift of 0.5 μ V/°C, and noise of only 11nV/ \sqrt{Hz} , it is perfectly suited for applications where large error sources cannot be tolerated. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the ADA8624 to maximize the signal-to-noise ratio and dynamic range for low power operation.

The AD8624 is specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8624 is available in an 14-lead TSSOP and 16-lead LFCSP (4x4x0.85mm) surface-mount package. The AD8624 is part of a growing family of 36 V, low power op amps from Analog Devices.

Table 1. Low Power Op Amps

Supply	40 V	36 V	12 V to 16 V	5 V		
Single	OP97	OP777	OP196	AD8603		
		OP1177	AD8663			
Dual	OP297	OP727	OP296	AD8607		
		OP2177	AD8667			
		AD706				
		AD8622				
Quad	OP497	OP747	OP496	AD8609		
		OP4177	AD8669			
		AD704				

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—±2.5 V OPERATION

 $V_{\text{S}}=\pm2.5$ V, V_{CM} = 0 V, V_{O} = 0 V, T_{A} = +25°C, unless otherwise specified.

Table 2.						
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			10	125	μV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			230	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		0.5	1.2	μV/°C
Input Bias Current	IB			30	200	рA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			400	рА
Input Offset Current	los			25	200	рA
-		$-40^{\circ}C \le T_A \le +125^{\circ}C$			300	рA
Input Voltage Range		$-40^{\circ}C \le T_A \le +125^{\circ}C$	-1.3		+1.3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -1.3 V \text{ to } +1.3 V$	110	120		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	107			dB
Open-Loop Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = -2.0 \text{ V}$ to $+2.0 \text{ V}$	118	135		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	109			dB
Input Resistance, Differential Mode	RINDM			1		GΩ
Input Resistance, Common Mode	RINCM			1		ΤΩ
Input Capacitance, Differential Mode	CINDM			5.5		pF
Input Capacitance, Common Mode	CINCM			3		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	2.45	2.49		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2.41			V
		$R_L = 10 \text{ k}\Omega$ to ground	2.40	2.45		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2.36			V
Output Voltage Low	Vol	$R_L = 100 \text{ k}\Omega$ to ground		-2.49	-2.45	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-2.41	V
		$R_L = 10 \text{ k}\Omega$ to ground		-2.45	-2.40	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-2.36	V
Short-Circuit Current	lsc			±30		mA
Closed-Loop Output Impedance	Zout	$F = 1 \text{ kHz}, A_v = 1$		2		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 2.0 \text{ V}$ to $\pm 18.0 \text{ V}$	125	145		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	120			dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0 \text{ mA}$		175	225	μΑ
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			310	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}, A_V = 1$		0.4		V/µs
Gain Bandwidth Product	GBP	$C_L = 20 \text{ pF}, A_V = 1$		580		kHz
Phase Margin	Фм	$C_L = 20 \text{ pF}, A_V = 1$		72		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		0.2		μV p-p
Voltage Noise Density	en	f = 1 kHz		12		nV/√Hz
Uncorrelated Current Noise Density	i _n	f = 1 kHz		0.15		pA/√Hz
Correlated Current Noise Density	İn	f = 1 kHz		0.07		pA/√Hz

ELECTRICAL CHARACTERISTICS—±15 V OPERATION

 $V_{\text{S}}=\pm 15$ V, V_{CM} = 0 V, V_{O} = 0 V, T_{A} = +25°C, unless otherwise specified.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			10	125	μV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			230	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.5	1.2	μV/°C
Input Bias Current	IB			45	200	pА
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			500	pА
Input Offset Current	los			35	200	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			500	pА
Input Voltage Range			-13.8		+13.8	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -13.8 \text{ V to } +13.8 \text{ V}$	125	135		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	112			dB
Open-Loop Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = -13.5 \text{ V}$ to $+13.5 \text{ V}$	125	137		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	120			dB
Input Resistance, Differential Mode	RINDM			1		GΩ
Input Resistance, Common Mode	RINCM			1		ΤΩ
Input Capacitance, Differential Mode	CINDM			5.5		pF
Input Capacitance, Common Mode	Сілсм			3		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$R_L = 10 k\Omega$ to ground	14.94	14.97		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	14.84			V
		$R_L = 100 \text{ k}\Omega$ to ground	14.86	14.89		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	14.75			V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega$ to ground		-14.97	-14.94	V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-14.92	V
		$R_L = 100 \text{ k}\Omega$ to ground		-14.89	-14.90	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-14.80	V
Short-Circuit Current	lsc			±40		mA
Closed-Loop Output Impedance	Zout	f = 1 kHz, $Av = 1$		1.5		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = \pm 2.0 V \text{ to } \pm 18.0 V$	125	145		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	120			dB
Supply Current/Amplifier	Isy	$I_0 = 0 \text{ mA}$		215	250	μΑ
		$I_0 = 0 \text{ mA}, -40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$			350	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, $A_V = 1$		0.48		V/µs
Gain Bandwidth Product	GBP	$C_L = 20 \text{ pF}, A_V = 1$		600		kHz
Phase Margin	Фм	$C_L = 20 \text{ pF}, A_V = 1$		72		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		0.2		μV p-p
Voltage Noise Density	en	f = 1 kHz		11		nV/√Hz
Uncorrelated Current Noise Density	i _n	f = 1 kHz		0.15		pA/√Hz
Correlated Current Noise Density	İn	f = 1 kHz		0.06		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	± 18 V
Input Voltage	±V supply
Input Current ¹	±10 mA
Differential Input Voltage	±10 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹The input pins have clamp diodes to power the supply pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 2-layer board.

Table 5. Thermal Resistance

Package Type	θιΑ	οισ	Unit
14-Lead TSSOP (RU-14)	TBD	TBD	°C/W
16-Lead LFCSP (CP-16)	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR08573-0-9/09(PrA)

www.analog.com