500MHz Triple 4:1 Gain-of-2, Multiplexing Amplifier

The ISL59446 is a triple channel 4:1 multiplexer featuring integrated amplifiers with a fixed gain of 2 , high slew-rate and excellent bandwidth for video switching. The device features a three-state output (HIZ), which allows the outputs of multiple devices to be tied together. A power-down mode ($\overline{\text { ENABLE }}$) is included to turn off un-needed circuitry in power sensitive applications. When the ENABLE pin is pulled high, the part enters a power-down mode and consumes just 14 mW .

Ordering Information

PART NUMBER (Note)	PART MARKING	 REEL	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL59446IRZ	IRZ	-	32 Ld QFN	L32.5x6A
ISL59446IRZ-T7	IRZ	$7 \prime$	32 Ld QFN	L32.5x6A

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Pinout

THERMAL PAD INTERNALLY CONNECTED TO V-. PAD MUST BE TIED TO V-
NIC = NO INTERNAL CONNECTION

Features

- 510 MHz bandwidth into 150Ω
- $\pm 1600 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- High impedance buffered inputs
- Internally set gain-of-2
- High speed three-state outputs (HIZ)
- Power-down mode (ENABLE)
- $\pm 5 \mathrm{~V}$ operation
- Supply current $11 \mathrm{~mA} /$ ch
- Pb-free plus anneal available (RoHS compliant)

Applications

- HDTV/DTV analog inputs
- Video projectors
- Computer monitors
- Set-top boxes
- Security video
- Broadcast video equipment

TABLE 1. CHANNEL SELECT LOGIC TABLE ISL59446

S1	S0	$\overline{\text { ENABLE }}$	HIZ	OUTPUT
0	0	0	0	IN0 (A, B, C)
0	1	0	0	IN1 (A, B, C)
1	0	0	0	IN2 (A, B, C)
1	1	0	0	IN3 (A, B, C)
X	X	1	X	Power-Down
X	X	0	1	High Z

Functional Diagram (each channel)

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Junction Temperature $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Power Dissipation . See Curves

AUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $V+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{OUT}}= \pm 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ and $\mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
GENERAL						
$+_{\text {S }}$ Enabled	Enabled Supply Current	No load, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, $\overline{\text { Enable }}$ Low	40	44	48	mA
-IS Enabled	Enabled Supply Current	No load, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, $\overline{\text { Enable }}$ Low	-45	-41	-37	mA
+ IS Disabled	Disabled Supply Current	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, $\overline{\text { Enable }}$ High	3	3.4	3.8	mA
-Is Disabled	Disabled Supply Current	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, $\overline{\text { Enable }}$ High	-40	-6		$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Positive and Negative Output Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	± 3.8	± 4.0	± 4.2	V
IOUT	Output Current	$\mathrm{V}_{\mathrm{IN}}=0.825 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \Omega$	± 80	± 135	± 180	mA
V ${ }_{\text {OS }}$	Output Offset Voltage		-40	-25	-10	mV
lb	Input Bias Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-4	-2	-1	$\mu \mathrm{A}$
ROUT	HIZ Output Resistance	HIZ = Logic High	700	900	1150	Ω
ROUT	Enabled Output Resistance	HIZ = Logic Low		0.2		Ω
R_{IN}	Input Resistance	$\mathrm{V}_{\mathrm{IN}}= \pm 1.75 \mathrm{~V}$		10		$\mathrm{M} \Omega$
$A_{C L}$ or A_{V}	Voltage Gain	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	1.94	1.99	2.04	V/V
LOGIC						
V_{IH}	Input High Voltage (Logic Inputs)			2		V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (Logic Inputs)			0.8		V
$\mathrm{IIH}^{\text {H }}$	Input High Current (Logic Inputs)	$\mathrm{V}_{\mathrm{H}}=5 \mathrm{~V}$	200	260	320	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input Low Current (Logic Inputs)	$\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$	-4	-2	-1	$\mu \mathrm{A}$
AC GENERAL						
PSRR	Power Supply Rejection Ratio	DC, PSRR V+ and V- combined $\mathrm{V}_{\text {OUT }}=0 \mathrm{dBm}$	45	53		dB
Xtalk	Channel to Channel Crosstalk	$\begin{aligned} & f=10 \mathrm{MHz}, \mathrm{ChX}-\mathrm{Ch} Y \text {-Talk } \\ & \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P} ;} ; \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF} \end{aligned}$		74		dB
Off - ISO	Off-State Isolation	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{Ch}-\mathrm{Ch}$ Off Isolation $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P} ;} ; \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		76		dB
dG	Differential Gain Error	NTC-7, $\mathrm{R}_{\mathrm{L}}=150, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		0.008		\%
dP	Differential Phase Error	NTC-7, $\mathrm{R}_{\mathrm{L}}=150, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		0.01		-

Electrical Specifications $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{OUT}}= \pm 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ and $\mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$, unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
BW	Small Signal -3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		620		MHz
		$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		530		MHz
	Large Signal -3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		280		MHz
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		260		MHz
FBW	0.1dB Bandwidth	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		160		MHz
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		50		MHz
SR	Slew Rate	25\% to $75 \%, R_{\mathrm{L}}=150 \Omega$, Input Enabled, $\mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		1600		V/us
TRANSIENT RESPONSE						
tr, tf Large Signal	Large Signal Rise, Fall Times, tr, tf, 10\%-90\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		1.2		ns
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		1.3		ns
tr, tf, Small Signal	Small Signal Rise, Fall Times, tr, tf,$10 \%-90 \%$	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		0.7		ns
		$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		0.9		ns
ts 0.1\%	Settling TIme to 0.1\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		7.2		ns
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		8.2		ns
ts 1%	Settling TIme to 1\%	$V_{\text {OUT }}=2 V_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		4		ns
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }} ; \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		4.3		ns
SWITCHING CHARACTERISTICS						
VGLITCH	Channel -to-Channel Switching Glitch	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		90		$m V_{P-P}$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega ; \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		15		$m V_{P-P}$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		1.8		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega ; \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		1.35		V_{P-P}
	HIZ Switching Glitch	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{C}_{\mathrm{L}}=1.1 \mathrm{pF}$		340		$m V_{P-P}$
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega ; \mathrm{C}_{\mathrm{L}}=2.1 \mathrm{pF}$		340		$m V_{P-P}$
${ }^{\text {t }}$ SW-L-H	Channel Switching Time Low to High	1.2 V logic threshold to 10% movement of analog output		24		ns
${ }_{\text {t }}$ SW-H-L	Channel Switching Time High to Low	1.2V logic threshold to 10% movement of analog output		24		ns
tpd	Propagation Delay	10\% to 10%		0.55		ns

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

FIGURE 1. SMALL SIGNAL GAIN vs FREQUENCY vs C_{L} INTO 500 2 LOAD

FIGURE 3. LARGE SIGNAL GAIN vs FREQUENCY vs C_{L} INTO 500Ω LOAD

FIGURE 5. GAIN vs FREQUENCY vs R_{L}

FIGURE 2. SMALL SIGNAL GAIN vs FREQUENCY vs C_{L} INTO 150Ω LOAD

FIGURE 4. LARGE SIGNAL GAIN vs FREQUENCY vs C_{L} INTO 150Ω LOAD

FIGURE 6. 0.1dB GAIN FLATNESS

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 7. Z OUT vs FREQUENCY - ENABLED

FIGURE 9. $Z_{\text {IN }}$ vs FREQUENCY

FIGURE 11. CROSSTALK AND OFF ISOLATION

FIGURE 8. $Z_{\text {OUT }}$ vs FREQUENCY - HIZ

FIGURE 10. PSRR vs FREQUENCY

FIGURE 12. INPUT NOISE vs FREQUENCY

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 13. DIFFERENTIAL GAIN AND PHASE;
$\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{F}_{\mathrm{O}}=3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

TIME (5ns/DIV)
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE; $R_{L}=500 \Omega$

FIGURE 17. LARGE SIGNAL TRANSIENT RESPONSE; $R_{L}=500 \Omega$

FIGURE 14. DIFFERENTIAL GAIN AND PHASE;
$\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{F}_{\mathrm{O}}=3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega$

FIGURE 16. SMALL SIGNAL TRANSIENT RESPONSE; $R_{L}=150 \Omega$

FIGURE 18. LARGE SIGNAL TRANSIENT RESPONSE; $R_{L}=150 \Omega$

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 19. PULSE OVERSHOOT vs $V_{\text {OUT }}, C_{L} ; R_{L}=500 \Omega$

FIGURE 21. CHANNEL TO CHANNEL SWITCHING GLITCH $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

FIGURE 23. $\overline{\text { ENABLE }}$ SWITCHING GLITCH $V_{I N}=0 V$

FIGURE 20. PULSE OVERSHOOT vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{C}_{\mathrm{L}} ; \mathrm{R}_{\mathrm{L}}=150 \Omega$

FIGURE 22. CHANNEL TO CHANNEL TRANSIENT RESPONSE $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$

FIGURE 24. $\overline{\text { ENABLE }}$ TRANSIENT RESPONSE $V_{\text {IN }}=1 \mathrm{~V}$

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

FIGURE 25. HIZ SWITCHING GLITCH $V_{I N}=0 V$

FIGURE 27. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 26. HIZ TRANSIENT RESPONSE $V_{I N}=1 V$

FIGURE 28. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

ISL59446

Pin Descriptions

$\begin{gathered} \text { ISL59446 } \\ \text { (32 LD QFN) } \end{gathered}$	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION
1	IN1A	Circuit 1	Channel 1 input for output amplifier " A "
$\begin{gathered} 2,4,8,13,15,24 \\ 28,30 \end{gathered}$	NIC		Not Internally Connected; it is recommended these pins be tied to ground to minimize crosstalk.
3	IN1B	Circuit 1	Channel 1 input for output amplifier "B"
5	IN1C	Circuit 1	Channel 1 input for output amplifier "C"
6	GNDB	Circuit 4	Ground pin for output amplifier "B"
7	IN2A	Circuit 1	Channel 2 input for output amplifier " A "
9	IN2B	Circuit 1	Channel 2 input for output amplifier "B"
10	IN2C	Circuit 1	Channel 2 input for output amplifier "C"
11	GNDC	Circuit 4	Ground pin for output amplifier "C"
12	IN3A	Circuit 1	Channel 3 input for output amplifier "A"
14	IN3B	Circuit 1	Channel 3 input for output amplifier "B"
16	IN3C	Circuit 1	Channel 3 input for output amplifier "C"
17	S1	Circuit 2	Channel selection pin MSB (binary logic code)
18	S0	Circuit 2	Channel selection pin. LSB (binary logic code)
19	OUTC	Circuit 3	Output of amplifier "C"
20	OUTB	Circuit 3	Output of amplifier "B"
21	V -	Circuit 4	Negative power supply
22	OUTA	Circuit 3	Output of amplifier "A"
23	V+	Circuit 4	Positive power supply
25	$\overline{\text { ENABLE }}$	Circuit 2	Device enable (active low). Internal pull-down resistor ensures device is active with no connection to this pin. A logic High puts device into power-down mode and only the logic circuitry is active. Logic states are preserved post power-down.
26	HIZ	Circuit 2	Output disable (active high). Internal pull-down resistor ensures the device will be active with no connection to this pin. A logic high, puts the outputs in a high impedance state. Use this state to control logic when more than one MUX-amp share the same video output line.
27	INOC	Circuit 1	Channel 0 for output amplifier " C "
29	INOB	Circuit 1	Channel 0 for output amplifier "B"
31	INOA	Circuit 1	Channel 0 for output amplifier " A "
32	GNDA	Circuit 4	Ground pin for output amplifier "A"
CIRCUIT 1			
			THERMAL HEAT SINK PAD V-

AC Test Circuits

${ }^{*} \mathrm{C}_{\mathrm{L}}$ Includes PCB trace capacitance
FIGURE 29A. TEST CIRCUIT WITH OPTIMAL OUTPUT LOAD

FIGURE 29B. INTER-STAGE APPLICATION CIRCUIT

${ }^{*} \mathrm{C}_{\mathrm{L}}$ Includes PCB trace capacitance
FIGURE 29C. 500Ω TEST CIRCUIT WITH 50Ω LOAD

${ }^{*} \mathrm{C}_{\mathrm{L}}$ Includes PCB trace capacitance
FIGURE 29D. 150Ω TEST CIRCUIT WITH 50Ω LOAD

${ }^{*} C_{L}$ Includes PCB trace capacitance
FIGURE 29E. BACKLOADED TEST CIRCUIT FOR 75Ω VIDEO CABLE APPLICATION

AC Test Circuits

Figures 29C and 29D illustrate the optimum output load for testing AC performance at 500Ω and 150Ω loads.
Figure 29E illustrates the optimum output load for 50Ω and 75Ω cable-driving.

Application Information

General

Key features of the ISL59446 include a fixed gain of 2, buffered high impedance analog inputs and excellent AC performance at output loads down to 150Ω for video cabledriving. The current feedback output amplifiers are stable operating into capacitive loads.
For the best isolation and crosstalk rejection, all GND pins and NIC pins must connect to the GND plane.

AC Design Considerations

High speed current-feed amplifiers are sensitive to capacitance at the inverting input and output terminals. The ISL59446 has an internally set gain of 2, so the inverting input is not accessible. Capacitance at the output terminal increases gain peaking (Figure 1) and pulse overshoot (Figures19, 20). The AC response of the ISL59446 is optimized for a total output capacitance of up to 2.1 pF over the load range of 150Ω to 500Ω. When PCB trace capacitance and component capacitance exceed $2 p F$, pulse overshoot becomes strongly dependent on the input pulse amplitude and slew rate. This effect is shown in Figures 19 and 20, which show approximate pulse overshoot as a function of input slew rate and output capacitance. Fast pulse rise and fall times (<150ns) at input amplitudes above 0.2 V , cause the input pulse slew rate to exceed the $1600 \mathrm{~V} / \mu \mathrm{s}$ output slew rate of the ISL59446. At 125 ps rise time, pulse input amplitudes $>0.2 \mathrm{~V}$ cause slew rate limit operation. Increasing levels of output capacitance reduce stability resulting in increased overshoot, and settling time.

PC board trace length should be kept to a minimum in order to minimize output capacitance and prevent the need for controlled impedance lines. At 500 MHz trace lengths approaching 1" begin exhibiting transmission line behavior and may cause excessive ringing if controlled impedance traces are not used. Figure 29A shows the optimum inter-stage circuit when the total output trace length is less than the critical length of the highest signal frequency.
For applications where pulse response is critical and where inter-stage distances exceed $\mathrm{L}_{\text {CRIT, }}$, the circuit shown in Figure 29B is recommended. Resistor RS constrains the capacitance seen by the amplifier output to the trace capacitance from the output pin to the resistor. Therefore, R_{S} should be placed as close to the ISL59446 output pin as possible. For inter-stage distances much greater than $\mathrm{L}_{\mathrm{CRIT}}$, the back-loaded circuit shown in Figure 29E should be used with controlled impedance PCB lines, with R_{S} and R_{L} equal to the controlled impedance.

For applications where inter-stage distances are long, but pulse response is not critical, capacitor C_{S} can be added to low values of R_{S} to form a low-pass filter to dampen pulse overshoot. This approach avoids the need for the large gain correction required by the -6 dB attenuation of the
back-loaded controlled impedance interconnect. Load resistor RL is still required but can be 500Ω or greater, resulting in a much smaller attenuation factor.

Control Signals

S0, S1, ENABLE, HIZ - These are binary coded, TTL/CMOS compatible control inputs. The S0, S1 pins select the inputs. All three amplifiers are switched simultaneously from their respective inputs. The ENABLE pin is used to disable the part to save power, and the HIZ pin to set the output stage in a high impedance state. For control signal rise and fall times less than 10ns the use of termination resistors close to the part may be necessary to prevent reflections and to minimize transients coupled to the output.

Power-Up Considerations

The ESD protection circuits use internal diodes from all pins to the $\mathrm{V}+$ and V - supplies. In addition, a dV/dT- triggered clamp is connected between the $V+$ and V - pins, as shown in the Equivalent Circuits 1 through 4 section of the Pin Description table. The dV/dT triggered clamp imposes a maximum supply turn-on slew rate of $1 \mathrm{~V} / \mu \mathrm{s}$. Damaging currents can flow for power supply rates-of-rise in excess of $1 \mathrm{~V} / \mu \mathrm{s}$, such as during hot plugging. Under these conditions, additional methods should be employed to ensure the rate of rise is not exceeded.

Consideration must be given to the order in which power is applied to the $\mathrm{V}+$ and V - pins, as well as analog and logic input pins. Schottky diodes (Motorola MBR0550T or equivalent) connected from $V+$ to ground and V - to ground (Figure 30) will shunt damaging currents away from the internal $\mathrm{V}+$ and V - ESD diodes in the event that the $\mathrm{V}+$ supply is applied to the device before the V - supply.
If positive voltages are applied to the logic or analog video input pins before $V+$ is applied, current will flow through the internal ESD diodes to the $\mathrm{V}+$ pin. The presence of large decoupling capacitors and the loading effect of other circuits connected to $\mathrm{V}+$, can result in damaging currents through the ESD diodes and other active circuits within the device. Therefore, adequate current limiting on the digital and analog inputs is needed to prevent damage during the time the voltages on these inputs are more positive than $\mathrm{V}+$.

HIZ State

An internal pull-down resistor ensures the device will be active with no connection to the HIZ pin. The HIZ state is established within approximately 20 ns (Figure 26) by placing a logic high ($>2 \mathrm{~V}$) on the HIZ pin. If the HIZ state is selected, the output impedance is $\sim 1000 \Omega$ (Figure 8). The supply current during this state is same as the active state.

ENABLE and Power-Down States

The enable pin is active low. An internal pull-down resistor ensures the device will be active with no connection to the $\overline{\text { ENABLE }}$ pin. The power-down state is established within approximately 200ns (Figure 24), if a logic high ($>2 \mathrm{~V}$) is placed on the ENABLE pin. In the power-down state, the output has no leakage but has a large variable capacitance (on the order of 15 pF), and is capable of being back-driven. Under this condition, large incoming slew rates can cause fault currents of tens of mA . Therefore, the parallel connection of multiple outputs is not recommended unless the application can tolerate the limited power-down output impedance.

Limiting the Output Current

No output short circuit current limit exists on these parts. All applications need to limit the output current to less than 50 mA . Adequate thermal heat sinking of the parts is also required.

PC Board Layout

The AC performance of this circuit depends greatly on the care taken in designing the PC board. The following are recommendations to achieve optimum high frequency performance from your PC board.

- The use of low inductance components such as chip resistors and chip capacitors is strongly recommended.
- Minimize signal trace lengths. Trace inductance and capacitance can easily limit circuit performance. Avoid sharp corners, use rounded corners when possible. Vias in the signal lines add inductance at high frequency and should be avoided. PCB traces greater than 1" begin to exhibit transmission line characteristics with signal rise/fall times of 1ns or less. High frequency performance may be degraded for traces greater than one inch, unless strip line are used.

FIGURE 30. SCHOTTKY PROTECTION CIRCUIT

- Match channel-channel analog I/O trace lengths and layout symmetry. This will minimize propagation delay mismatches.
- Maximize use of AC decoupled PCB layers. All signal I/O lines should be routed over continuous ground planes (i.e. no split planes or PCB gaps under these lines). Avoid vias in the signal I/O lines.
- Use proper value and location of termination resistors. Termination resistors should be as close to the device as possible.
- When testing use good quality connectors and cables, matching cable types and keeping cable lengths to a minimum.
- Minimum of 2 power supply decoupling capacitors are recommended ($1000 \mathrm{pF}, 0.01 \mu \mathrm{~F}$) as close to the devices as possible - avoid vias between the cap and the device because vias add unwanted inductance. Larger caps can be farther away. When vias are required in a layout, they should be routed as far away from the device as possible.
- The NIC pins are placed on both sides of the input pins. These pins are not internally connected to the die. It is recommended these pins be tied to ground to minimize crosstalk.

The QFN Package Requires Additional PCB Layout Rules for the Thermal Pad

The thermal pad is electrically connected to V- supply through the high resistance IC substrate. Its primary function is to provide heat sinking for the IC. However, because of the connection to the V - supply through the substrate, the thermal pad must be tied to the V - supply to prevent unwanted current flow to the thermal pad. Do not tie this pin to GND as this could result in large back biased currents flowing between GND and V-. The ISL59446 the package with pad dimensions of $\mathrm{D} 2=2.48 \mathrm{~mm}$ and $\mathrm{E} 2=3.4 \mathrm{~mm}$.

Maximum AC performance is achieved if the thermal pad is attached to a dedicated decoupled layer in a multi-layered PC board. In cases where a dedicated layer is not possible, AC performance may be reduced at upper frequencies.

- The thermal pad requirements are proportional to power dissipation and ambient temperature. A dedicated layer eliminates the need for individual thermal pad area. When a dedicated layer is not possible a 1 " $\times 1$ " pad area is sufficient for the ISL59446 that is dissipating 0.5 W in $+50^{\circ} \mathrm{C}$ ambient. Pad area requirements should be evaluated on a case by case basis.

Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP)

L32.5x6A (One of 10 Packages in MDP0046)
32 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220)

SYMBOL	MILLIMETERS			NOTES
	MIN	NOMINAL	MAX	
A	0.80	0.90	1.00	-
A1	0.00	0.02	0.05	-
D	5.00 BSC			-
D2	2.48 REF			-
E	6.00 BSC			-
E2	3.40 REF			-
L	0.45	0.50	0.55	-
b	0.20	0.22	0.24	-
C	0.20 REF			-
e	0.50 BSC			-
N	32 REF			4
ND	7 REF			6
NE	9 REF			5

NOTES:

1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Tiebar view shown is a non-functional feature.
3. Bottom-side pin \#1 I.D. is a diepad chamfer as shown.
4. N is the total number of terminals on the device.
5. NE is the number of terminals on the " E " side of the package (or Y-direction).
6. ND is the number of terminals on the " D " side of the package (or X-direction). ND = (N/2)-NE.
7. Inward end of terminal may be square or circular in shape with radius (b/2) as shown.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

