CONTRINEX

$\mathrm{Mi}_{\mathrm{i}, \mathrm{m}, \mathrm{s} \times \mathrm{mzoq}}^{\mathrm{F}}$

- Short: housing length 50 mm (cable connection) / 63.5 mm (connector model)
- Long operating distances
- High switching frequency: $1000 \mathrm{~Hz} / 500 \mathrm{~Hz}^{*}$
- Glass window, therefore scratch resistant and easy to clean
- Excellent resistance to environmental influences thanks to polyurethane potting of the electronic module
- Convenient sensitivity adjustment by means of the built-in potentiometer (diffuse sensors; optional for other models)
- High degree of protection: IP 67

O\{z i-\&Oiu\{z
The devices are built into chromedplated brass housings, and encapsulated in polyurethane. The electronic module is constructed using SMD technology on a ceramic-free epoxy substrate, and is therefore insensitive to shock.
_qz yuful,, Giilus
The sensitivity can be adjusted by means of the built-in potentiometer (energetic diffuse sensors; optional for other models). Turning clockwise increases the sensitivity.
[| q-mpus ,,", pu inzoq,mp9 vq iy qZi

The operating distance can be adjusted by means of the built-in potentiometer (diffuse sensors with background suppression). Turning clockwise increases the operating distance.
1 ~~iqoiu\{z
The switches are protected against overloads, short-circuits and all possible wire reversals. Furthermore, protection against overvoltages caused by inductive loads on the output and against voltage spikes on the power supply lines are built in. Malfunctions or destruction caused by electrostatic discharges, fast transients, or HF fields, are prevented by appropriate technology.

XQP

The yellow LED lights up when the output is switched on. The green LED lights up when sufficient light is available for reliable operation (approx. 80\% of the maximum operating distance).

O\{zzqoutz

Switches with 2 mPVC cable $3 \times 0.34 \mathrm{~mm}^{2}$ (type 8) or 4×0.25 mm^{2} (type 12) for through-beam sensors, or 4 -pole S 12 connector are standard. Other cable types or lengths are available on request. Suitable connecting cables are listed on page 112.

^qisqoi \{~

A range of suitable reflectors for the reflex sensors is listed on page 99.
${ }^{-} q i, L z \mid \nmid i$
The additional test input built into the emitters of the through-beam models provides the possibility of an extra system control.

Q¥oq , xst i,o\{zi~\{x
The built-in excess light circuit simplifies alignment and adjustment of the sensors. Any eventual dirt on the sensing faces is recognized in time, and can be removed easily.

{xq-9 Z, -q qi }
Operation of the output is inhibited until the power supply requirements are met. This prevents unwanted switching of the output during power-ON.
Nnous- \{ 4 zp
$\phi|\mid$ - u
The diffuse sensor with background suppression uses electronic distance setting. A PSD (\osition-_ ensitive Pevice) serves as the light receiver. Operating distance adjustment is carried out by means of a potentiometer, using visible red light as the source. The visible light spot (approx. $3 \mathrm{~mm} \varnothing$) permits simple alignment. The device contains no moving optical parts, and is therefore insensitive to vibration.

P mim, t qqi

Detailed data sheets with additional technical information are available for all models. These may be retrieved fromthe CONTRINEX website (www.contrinex.com), or ordered cost-free from our sales offices.

P नTx U S

The mechanical drawings may be downloaded as data files from the CONTRINEX website, andimported directly into construction drawings.

Pqxfq \uparrow,| nownsq

Proximity switch, 2 fixing nuts, instructions.

Purł q, qz \{-8 qzq-sqilo $B \ll y$ y

CONTRINEX

$\mathrm{Mi}_{\mathrm{i}, \mathrm{m}, \mathrm{s} \times \mathrm{mzoq}} \mathrm{F}$

- Right-angle sensing
- Compact, robust and fully integrated sensing head
- Easy installation: Fixing nuts can be mounted from both ends
- Technical data identical to corresponding devices with axial light emission
- Excellent resistance to environmental influences thanks to polyurethane potting of the electronic module
- Glass window, therefore scratch resistant and easy to clean
- High degree of protection: IP 67

The devices are built into chromedplated brass housings, and encapsulated in polyurethane. The electronic module is constructed using SMD technology on a ceramic-free epoxy substrate, and is therefore insensitive to shock.
_ qZ UNUYI,
qiiuss
The sensitivity can be adjusted by means of the built-in potentiometer (diffuse sensors; optional for other models). Turning clockwise increases the sensitivity.
[| q-mpus, pu 9 ¡nzoq, mput ¡9 y qzi

The operating dis-
tance can be adjusted by means of the built-in potentiometer (diffuse sensors with background suppression). Turning clockwise increases the operating distance.
\ \{ iqoiunz
The switches are protected against overloads, short-circuits and all possible wire reversals. Furthermore, protection againstovervoltages caused by inductive loads on the output and against voltage spikes on the power supply lines are built in. Malfunctions or destruction caused by electrostatic discharges, fast transients, or HF fields, are prevented by appropriate technology.

XQP

The yellow LED lights up when the output is switched on. The green LED lights up when sufficient light is available for reliable operation (approx. 80% of the maximum operating distance).

O\{zzqoju\{z

Switches with 2 m PVC cable $3 \times 0.34 \mathrm{~mm}^{2}$ (type 8) or 4×0.25 mm^{2} (type 12) for through-beam sensors, or 4-pole S12 connector are standard. Other cable types or lengths are available on request. Suitable connecting cables are listed on page 112.

^qisqoi\{~

A range of suitable reflectors for the reflex sensors is listed on page 99.

${ }^{`} q i, u \mid \nmid i$

The additional test input built into the emitters of the through-beam models provides the possibility of an extra system control.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{` qot z ıomxpmmf}

\hline \multicolumn{2}{|l|}{(according to IEC 60947-5-2)}

\hline Hysteresis \& 10 \% typ.

\hline Supply voltage range U_{B} \& $10 . .36$ VDC

\hline Max. ripple content \& 20 \%

\hline Output current \& 200 mA

\hline Output voltage drop \& $$
\begin{aligned}
& 2.0 \mathrm{~V} \text { max. } \\
& \text { at } 200 \mathrm{~mA}
\end{aligned}
$$

\hline Max. switching frequency \& $$
\begin{aligned}
& 1,000 \mathrm{~Hz} / \\
& 500 \mathrm{~Hz}^{*}
\end{aligned}
$$

\hline Switching time (\uparrow and \downarrow) \& | $0.5 \mathrm{msec} /$ |
| :--- |
| $1 \mathrm{msec}^{*}$ |

\hline \multicolumn{2}{|l|}{Max. ambient light:}

\hline halogen \& 5,000 Lux

\hline sun \& 10,000 Lux

\hline Ambient temperature range \& $-25 \ldots+55^{\circ} \mathrm{C}$

\hline Degree of protection \& IP 67

\hline \multicolumn{2}{|l|}{EMC protection:}

\hline IEC 60255-5 \& 1 kV

\hline IEC 61000-4-2 \& Level 2

\hline IEC 61000-4-3 \& Level 3

\hline IEC 61000-4-4 \& Level 3

\hline \multicolumn{2}{|l|}{Diffuse sensor with background suppression}

\hline
\end{tabular}

`qot z lomxpminf
(according to IEC 60947-5-2)
\% typ.
Max. ripple content 20%
Output current 200 mA
Output voltage drop $\quad 2.0 \mathrm{~V}$ max. $1,000 \mathrm{~Hz} /$ $500 \mathrm{~Hz}^{*}$ 0.5 msec 5,000 Lux 10,000 Lux $-25 \ldots+55^{\circ} \mathrm{C}$
range
Degree of protection IP 67
EMC protection:
CC 61000-4 Level 2
IEC 61000-4-3 Level 3
IEC 61000-4-4 Level 3
Diffuse sensor with background suppression

Q¥oq , xsti,o\{zi~ $\{x$
The built-in excess light circuit simplifies alignment and adjustment of the sensors. Any eventual dirt on the sensing faces is recognized in time, and can be removed easily.

Operation of the output is inhibited until the power supply requirements are met. This prevents unwanted switching of the output during power-ON.
Nnous $\{\phi z p, \phi| |-q \quad u[z$
The diffuse sensor with background suppression uses electronic distance setting. A PSD (\o-sition-_ensitive Pevice) serves as the light receiver. Operating distance adjustment is carried out by means of a potentiometer, using visible red light as the source. The visible light spot (approx. 3 $\mathrm{mm} \varnothing$) permits simple alignment. The device contains no moving optical parts, and is therefore insensitive to vibration.
P mpm, t qqi
Detailed data sheets with additional technical information are availablefor all models. These may be retrieved from the CONTRINEX website (www.contrinex.com), or ordered cost-free from our sales offices.

P গTx US

The mechanical drawings may be downloaded as data files from the CONTRINEX website, and imported directly into construction drawings.
Pqxfq \uparrow, | nowns q
Proximity switch, 2 fixing nuts, instructions.

Operating distance
Standard target
No-load supply current
Emitter
Weight (cable / connector model)

Part ref.: (bold: preferred types)
NPN light-ON / cable
NPN dark-ON / cable
NPN light-ON / connector S12
NPN dark-ON / connector S12
PNP light-ON / cable
PNP dark-ON / cable
PNP light-ON / connector S12
PNP dark-ON / connector S12
Suitable connecting cables (page 112)
Wiring (pages 100-101)

$\mathrm{Y}=\mathrm{DC}$

Purrł q, qz \{-8 qzq-s qio,

$$
B \ll y^{y}
$$

Response curve:

600 mm
$200 \times 200 \mathrm{~mm}$ white
15 mA typ.
LED red 660 nm $123 / 56 \mathrm{~g}$

LTK-1180W-301

LTS-1180W-301

LTK-1180W-303

LTS-1180W-303

G, H, K, L
Diagram 1

$Q^{\wedge}(\mathbb{Q},=D<c$

$Y=D C$
 $Y=D C$

 nnous $\{\phi z p, ~ ¢| |-q u\{z$
$=<: \because:, \Rightarrow$ у у
$>8 \lll$ y y

$10 \ldots 120 \mathrm{~mm}$	$2,000 \mathrm{~mm}$
$100 \times 100 \mathrm{~mm}$ white	Reflector type 3
25 mA typ.	15 mA typ.
LED red 660 nm	LED red polarized 660 nm
$124 / 57 \mathrm{~g}$	$125 / 56 \mathrm{~g}$

LHK-1180W-301
LRK-1180W-302
LHS-1180W-301
LRS-1180W-302
LHK-1180W-303

-	LRK-1180W-304
LHS-1180W-303	-
-	LRS-1180W-304
G, H, K, L	G, H, K, L
Diagram 1	Diagram 1

CONTRINEX

$\mathrm{Mi}_{\mathrm{i}, \mathrm{m}, \mathrm{s} \times \mathrm{mzoq}} \mathrm{F}$

- Small, but robust
- Long operating distances
- High switching frequency: $1000 \mathrm{~Hz} / 500 \mathrm{~Hz}^{*}$
- Glass window, therefore scratch resistant and easy to clean
- Excellent resistance to environmental influences thanks to polyurethane potting of the electronic module
- Convenient sensitivity adjustment by means of the built-in 12-turn potentiometer
- High degree of protection: IP 67

O\{z i-\&Oju\{z

The devices are built into a housing of glass-fiber reinforced PBTP/polybutyleneterephthalate (Crastin), and fully potted with polyurethane resin. The covers are ultrasonically welded. Two mounting holes are provided for the use of M4 fastening screws. A universal mounting bracket as well as screws are included with every switch.

_qz yl£ul,
 - qiilus

The sensitivity can be very finely adjusted by means of the builtin 12-turn potentiometer. The potentiometer cannot be turned too far. Turning clockwise increases the sensitivity.

`qot z ionxpmplf

(according to IEC 60947-5-2)	
Hysteresis	10 \% typ.
Supply voltage range U_{B}	$10 . .36$ VDC
Max. ripple content	20 \%
Output current (total of both outputs)	200 mA
Output voltage drop	$\begin{aligned} & 2.0 \mathrm{~V} \text { max. } \\ & \text { at } 200 \mathrm{~mA} \end{aligned}$
Max. switching frequency	$\begin{aligned} & 1000 \mathrm{~Hz} / \\ & 500 \mathrm{~Hz}^{*} \end{aligned}$
Switching time (\uparrow and \downarrow)	$0.5 \mathrm{msec} /$ $1 \mathrm{msec}^{*}$
Max. ambient light:	
halogen	5,000 Lux
sun	10,000 Lux
Ambient temperature range	$-25 \ldots+55^{\circ} \mathrm{C}$
Degree of protection	IP 67
EMC protection:	
IEC 60255-5	1 kV
IEC 61000-4-2	Level 2
IEC 61000-4-3	Level 3
IEC 61000-4-4	Level 3
Diffuse sensor with background suppression	

1 ~iqoiu\{z
The switches are protected against overloads, short-circuits and all possible wire reversals. Furthermore, protection against overvoltages caused by inductive loads on the output and against voltage spikes on the power supply lines are built in. Appropriate technology prevents malfunctions or destruction caused by electrostatic discharges, fast transients, or HF fields.
XQP
The yellow LED lights up when the light-ON output is switched. The green LED lights up if the receiver gets enough light (excess light) for reliable operation. At the same time the corresponding output (types -102 and -104 only) is switched.

O\{zzqOju\{z

Switches with 3 m PVC cable $4 \times 0.14 \mathrm{~mm}^{2}$ (type 2) or 4-pole S8 connector are standard. Other cable types or lengths are available on request. Suitable connecting cables are listed on page 112.
^qropoi\{~
A range of suitable reflectors for the reflex sensors is listed on page 99.

` q i,u| \mid i

The additional test input built into the emitters of the through-beam models provides the possibility of an extra system control.
$\mathrm{Q} \neq \mathrm{oq}$, , xst $\mathrm{i}, \mathrm{O}\left\{\mathrm{z}_{\mathrm{i}} \mathcal{\sim} \mathrm{x}\right.$
The built-in excess light circuit (separate output for types -102 and -104) simplifies alignment and adjustment of the sensors. Any dirt is recognized in time, and can be removed easily.

{ฉq~9 Z, -q qi }
Operation of the output is inhibited until the power supply requirements are met. This prevents unwanted switching of the output during power-ON.
Nnows-ftzp, $\ddagger|\mid$-q $\mathfrak{u} z$
The diffuse sensor with background suppression uses electronic distance setting. A PSD (\o-sition-_ensitive Pevice) serves as the light receiver. Operating distance adjustment is carried out by means of a potentiometer, using visible red light as the source. The visible light spot (approx. 3 $\mathrm{mm} \varnothing$) permits simple alignment. The device contains no moving optical parts, and is therefore insensitive to vibration.

P mpm, t qqi
Detailed data sheets with additional technical information are available for all models. These may be retrieved from the CONTRINEX website (www.contrinex.com), or ordered cost-free from our sales offices.

P भho IZS

The mechanical drawings may be downloaded as data files from the CONTRINEX website, and imported directly into construction drawings.

Pqu£q \uparrow, nowns q

Proximity switch, mounting bracket, screws, washers and nuts, screwdriver, instructions.

Operating distance
Standard target
No-load supply current
Emitter
Weight (cable / connector model)

Part ref.: (bold: preferred types)
NPN changeover outputs / cable
NPN excess light output / cable
NPN changeover outputs / conn. S8
NPN excess light output / conn.S8
PNP changeover outputs / cable
PNP excess light output / cable
PNP changeover outputs / conn. S8
PNP excess light output / conn. S8
Suitable connecting cables (page 112)
Wiring (pages 100-101)

Purct q, qz \{-8 qzq-sqilo,

$$
=8 \ll \text { y y }
$$

Dimensions:

Response curve:

$1,200 \mathrm{~mm}$
$200 \times 200 \mathrm{~mm}$
15 mA typ.
IR LED 880 nm
$75 / 17 \mathrm{~g}$

LTK-3030-101

LTK-3030-102
LTS-3030-101
LTS-3030-102
LTK-3030-103
LTK-3030-104
LTS-3030-103
LTS-3030-104
E, F
Diagram 2

ロ，？$<\neq ?$

Purd q，qz \｛～ox t nnows -4 qzp，$\ddagger|\mid$－q $u\{z$ $=A,::,=A<y$ y c^{c}

ロ，？＜\ddagger ？$<$
ロ，？$<\neq ?<$

z
（R）receiver／（E）emitter

LHK－3030－101
LHK－3030－102
LHS－3030－101
LHS－3030－102
LHK－3030－103
LHK－3030－104
LHS－3030－103
LHS－3030－104
E，F
Diagram 2

LRK－3030－101
LRK－3030－102
LRS－3030－101
LRS－3030－102
LRK－3030－103
LRK－3030－104
LRS－3030－103
LRS－3030－104
E，F
Diagram 2

15 ．．． 150 mm
$100 \times 100 \mathrm{~mm}$
25 mA typ．
LED red 660 nm
$75 / 17 \mathrm{~g}$

$4,000 \mathrm{~mm}$
Reflector type 3

CONTRINEX

$\mathrm{Mi}_{\mathrm{i}, \mathrm{m}, \mathrm{s} \times \text { NIz oqF }}$

- Small, but robust
- Low cost
- High switching frequency: $1000 \mathrm{~Hz} / 500 \mathrm{~Hz}^{*}$
- Glass window, therefore scratch resistant and easy to clean
- Excellent resistance to environmental influences thanks to polyurethane potting of the electronic module
- Convenient sensitivity adjustment by means of the built-in 12-turn potentiometer
- High degree of protection: IP 65

O\{z i-\&Oju\{z

The devices are built into a housing of glass-fiber reinforced PBTP/polybutyleneterephthalate (Crastin), and fully potted with polyurethane resin. The covers are ultrasonically welded. Two mounting holes are provided for the use of M4 fastening screws.
_ qz ulful,

- qiius

The sensitivity can be very finely adjusted by means of the built-in 12-turn potentiometer. The potentiometer cannot be turned too far. Turning clockwise increases the sensitivity.

qot z ionxpmif (according to IEC 60947-5-2)	
Hysteresis	10 \% typ.
Supply voltage range U_{B}	$10 . .36$ VDC
Max. ripple content	20 \%
Output current	200 mA
Output voltage drop	2.0 V max. at 200 mA
Max. switching frequency:	$1000 \mathrm{~Hz} \text { / }$
Switching time (\uparrow and \downarrow)	$\begin{aligned} & 0.5 \mathrm{msec}^{2} \\ & 1 \mathrm{msec}^{*} \end{aligned}$
Max. ambient light:	
halogen	5,000 Lux
sun	10,000 Lux
Ambient temperature range	$-25 \ldots+55^{\circ} \mathrm{C}$
Degree of protection	IP 65
EMC protection:	
IEC 60255-5	1 kV
IEC 61000-4-2	Level 3
IEC 61000-4-3	Level 3
IEC 61000-4-4	Level 3
Diffuse sensor with background suppression	

`qot z 10 mxpmnf

according to IEC 60947-5-2)
Supply voltage range $U_{B} \quad 10 \ldots 36$ VDC
Max. ripple content
Output current
Output voltage drop 2.0 V max. at 200 mA $0.5 \mathrm{msec} /$ 5,000 Lux 10,000 Lux IP 65 1 kV Level 3
Level 3 Level 3
Diffuse sensor with background suppression
\ ~iqoiu\{z
The switches are protected against overloads, short-circuits and all possible wire reversals. Furthermore, protection against overvoltages caused by inductive loads on the output and against voltage spikes on the power supply lines are built in. Appropriate technology prevents malfunctions or destruction caused by electrostatic discharges, fast transients, or HF fields.

XQP

The yellow LED lights up when the output is switched. The green LED lights up when sufficient light (excess light) is available for reliable operation (approx. 80\% of the maximum operating distance).

O\{zzqoiuk

Switches with 2 m PVC cable $3 \times 0.14 \mathrm{~mm}^{2}$ (type 2) or 3-pole S8 connector are standard. Other cable types or lengths are available on request. Suitable connecting cables are listed on page 112.
^qrapo; \sim
A range of suitable reflectors for the reflex sensors is listed on page 99.
` q i, $\mathbf{x} \mid \nmid$ i
The additional test input built into the emitters of the through-beam models provides the possibility of an extra system control.
Q $¥ o q$, xst $\mathrm{i}, \mathrm{O}\left\{\mathrm{z}_{\mathrm{i}} \sim \mathrm{X}\right.$
The built-in excess light circuit simplifies alignment and adjustment of the sensors. Any dirt is recognized in time, and can be removed easily.

{ } \alpha q - 9 Z, -q q _ { i }
Operation of the output is inhibited until the power supply requirements are met. This prevents unwanted switching of the output during power-ON.

Nnous \sim \{ zp

$\phi|\mid \sim \mathcal{u} Z$
The diffuse sensor with background suppression uses electronic distance setting. A PSD (\backslash osition-_ ensitive P evice) serves as the light receiver. Operating distance adjustment is carried out by means of a potentiometer, using visible red light as the source. The visible light spot (approx. 3 mm \varnothing) permits simple alignment. The device contains no moving optical parts, and is therefore insensitive to vibration.

Rułuzs

For fixation purposes, CONTRINEXoffers amountingset(orderreference LXW-3030-003), consisting of a universal fixing bracket, screws, andascrewdriversuitableforadjusting the potentiometer.
Pmm, tqii
Detailed data sheets with additional technical information are available for all models. These may be retrieved from the CONTRINEX website (www.contrinex.com), or ordered cost-free from our sales offices.

P HTx US

The mechanical drawings may be downloaded as data files from the CONTRINEX website, and imported directly into construction drawings.
Pqx£q \uparrow,| nهunsq
Proximity switch, instructions.

Response curve:

600 mm
$200 \times 200 \mathrm{~mm}$ 15 mA typ.
IR LED 880 nm
$75 / 17 \mathrm{~g}$
Part ref.: (bold: preferred types)
NPN light-ON / cable
NPN dark-ON / cable
NPN light-ON / connector S8
NPN dark-ON / connector S8
PNP light-ON / cable
PNP dark-ON / cable
PNP light-ON / connector S8
PNP dark-ON / connector S8
Suitable connecting cables (page 112)
Wiring (pages 100-101)

Operating distance
Standard target
No-load supply current
Emitter
Weight (cable / connector model)

600 mm
$200 \times 200 \mathrm{~mm}$
15 mA typ.
IR LED 880 nm
$75 / 17 \mathrm{~g}$

LTK-3031-301

LTS-3031-301

LTK-3031-303

LTS-3031-303

A, B
Diagram 1

ㅁ,? $<\neq ?<$

Plort q, qz \{-8
qzq-s qilo
B<<у y

Dimensions:

ロ，？$<\neq ?<$

Purrt q，qz \｛～，ut nnous $\{\phi z p, \phi| |$ q u\｛z $\Rightarrow A,::, \Rightarrow A<y ~ y ~$ c^{c}
ㅁ，？＜\ddagger ？
ロ，？$<\neq ?<$ ロ，？$<\neq ?<$
（R）receiver／（E）emitter

-	LFK－3031－301
LLK－3031－202（R）／LLK－3031－200（E）	LFK－3031－302
-	LFS－3031－301
LLS－3031－202（R）／LLS－3031－200（E）	LFS－3031－302
-	LFK－3031－303
LLK－3031－204（R）／LLK－3031－200（E）	LFK－3031－304
-	LFS－3031－303
LLS－3031－204（R）／LLS－3031－200（E）	LFS－3031－304
A，B	A，B
Diagram 1 （R）／Diagram 4 （E）	Diagram 1

CONTRINEX

Dimensions:

CONTRINEX

 Q^(Q) , B $\subset \subset$
$\mathrm{Mi}_{\mathrm{i}, \mathrm{m}, \mathrm{s} \times \text { Mroon }} \mathrm{F}$

- Robust universal devices
- Long operating distances
- High switching frequency: $1000 \mathrm{~Hz} / 250 \mathrm{~Hz}^{*}$
- Reflex sensors using autocollimation principle
- Glass window, therefore scratch resistant and easy to clean
- The PBTP (Crastin) housing provides exceptional resistance to environmental influences
- Sensitivity adjustment by means of a built-in potentiometer with calibration scale and reduction gearbox
- High degree of protection: IP 67

O\{z i-\&Oiu\{z
The devices are built into a housing of glass-fiber reinforced PBTP/poly-butyleneterephthalate (Crastin). For fixing purposes, a number of through holes suitable for M5 screws are provided. The distance between the holes has been chosen for maximum compatibility with the most commonly available sensors

qot z lomxpmpmf

(according to IEC 60947-5-2)
Hysteresis
10 \% typ.
DC supply voltage range $U_{B} 10 \ldots 36$ VDC
UC supply voltage range $U_{B} 20 \ldots 265$ VAC 20 ... 320 VDC
Max. ripple content** 20 \%
Output current ${ }^{* *}$
Output voltage drop** $\quad 2.0 \mathrm{~V}$ max. at 200 mA
Max. switching frequency** 1000 Hz / $250 \mathrm{~Hz}^{*}$
Switching time** \uparrow and \downarrow) $0.5 \mathrm{msec} /$ $1 \mathrm{msec}^{*}$
Max. ambient light:
on the market.

_qz प£́fl,
 qiiuss

The sensitivity can be very finely adjusted by means of the built-in potentiometer with calibration scale and reduction gearbox. The potentiometer cannot be turned too far. Turning clockwise increases the sensitivity.
halogen
sun
Ambient temperature range
Degree of protection IP 67
EMC protection:
IEC 60255-5 $\quad 1 \mathrm{kV}$
IEC 61000-4-2 Level 3
IEC 61000-4-3 Level 3
IEC 61000-4-4 Level 3

* Diffuse sensor with background suppression
** DC models (UC see data sheet)
1 ~iqoiu\{z
The switches are protected against overloads, short-circuits and all possible wire reversals. Furthermore, protection against overvoltages caused by inductive loads on the output and against voltage spikes on the power supply lines are built in. Appropriate technology prevents malfunctions or destruction caused by electrostatic discharges, fast transients, or HF fields.

XQP

The yellow LED lights up when the light-ON output is switched. The green LED indicates that sufficient light is available for reliable operation (approx. 80% of the maximum operating distance); at the same time, the corresponding output (if available) is switched.

O\{zzqoiu\{z

As standard, the devices are delivered with 4-pole or 5-pole S12 connector, or screw terminal. Suitable connecting cables are listed on page 112.
^qrapoi\{~
A range of suitable reflectors for the reflex sensors is listed on page 99.
q i, 仅| \ddagger i
The built-in test input (optional for some models) provides the possibility of an extra system control.
Q $\neq 0$, usst i,o\{ziqx
The built-in excess light circuit simplifies alignment and adjustment of the sensors. Eventual dirt is recognized in time, and can be removed easily.

\ \{ $\alpha q-9 \mathrm{Z},-q \mathrm{qi}_{i}$

Operation of the output is inhibited until the power supply requirements are met. This prevents unwanted switching of the output during power-ON.
Nnous \{qzp, $\ddagger|\mid-q u[z$
The diffuse sensor with background suppression uses electronic distance setting. A PSD (\backslash osition- ensitive Pevice) serves as the light receiver. Operating distance adjustment is carried out by means of a potentiometer, using infra-red light as the source. At a distance of 1 m , the light spot has a diameter of approx. 30 mm .

uy q~
The timer (optional) allows selection of switch-on delay, switch-off delay, or pulses; adjustable from $0.01 \ldots 1 \mathrm{~s}$ (UC models $0.1 \ldots 10 \mathrm{~s}$).

Pmm, tqqi

Detailed data sheets with additional technical information are available for all models. These may be retrieved from the CONTRINEX website (www.contrinex.com), or ordered cost-free from our sales offices.

P -nx US

The mechanical drawings may be downloaded as data files from the CONTRINEX website, and imported directly into construction drawings.

Pqxfq~, | nowns q

Proximity switch, instructions.

Operating distance

Standard target
No-load supply current DC / UC
Emitter
Weight
Part ref.: (bold: preferred types)
DC NPN / connector S12
DC NPN / screw terminal
DC NPN timer*** / connector S12
DC NPN timer*** / screw terminal
DC PNP / connector S12
DC PNP / screw terminal
DC PNP timer*** / connector S12
DC PNP timer*** / screw terminal
UC relay / connector S12
UC relay / screw terminal
UC relay / timer***/ connector S12
UC relay / timer***/ screw terminal
Suitable connecting cables (page 112)
Wiring (pages 100-101)

ロ,BA¥D?

Purt q, qz \{-8 qzq-sqilo, $>\lll<$ y y

Response curve:

$20 \mathrm{~mA} / 2$ VA typ.
IR LED 880 nm
100 g

LTS-6080-101*
LTT-6080-101
LTS-6080-151**
LTT-6080-151
LTS-6080-103*
LTT-6080-103
LTS-6080-153**
LTT-6080-153
LTS-6080-115
LTT-6080-115
LTS-6080-165
LTT-6080-165
M, N (** with test input: 0, P)
2 (LTS-...*) / 3 (LTS/LTT-...) / 5 (UC)

