Timers - Multifunction7 functions

GAMMA series

7 functions

10 time ranges
Connection of remote potentiometer possible
Zoom voltage 24 to 240 V AC/DC
2 change-over contacts
Width 22.5 mm
Industrial design

Technical data

Rated surge voltage: 4 kV
6. Output circuit

2 potential free change over contacts
Rated voltage: $\quad 250 \mathrm{~V}$ AC
Switching capacity: $\quad 750 \mathrm{VA}$ (3A / 250V AC)
If the distance between the devices is less than 5 mm !
Switching capacity: 1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm !
Fusing: 5A fast acting
Mechanical life: $\quad 20 \times 10^{6}$ operations
Electrical Life:
Switching frequency:

Overvoltage category:
2×10^{5} operations at 1000 VA resistive load max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1) III (in accordance with IEC 60664-1)
Rated surge voltage: 4 kV

7. Control contact

Activation:
Potential free:
Loadable:
Control voltage:
Short circuit current:
Line length:
Control pulse length:

bridge Y1-Y2

yes, basic isolation against input and output circuit
no
max. 5V
max. 1 mA
max. 10m
min .50 ms (except Wt function) min. 7 ms (Wt function only)
8. Remote potentiometer (not included)

The internal potentiometer is de-activated when a remote potentio-meter is connected !!!
Connections:
Line type:
Control voltage:
Short circuit current:
Line length:
$1 \mathrm{M} \Omega$ potentiometer (type RONDO R2), terminals Y2-Z1 resp. Y2-Z2
twisted pair
max. 5V
$\max .5 \mu \mathrm{~A}$
max. 5 m
9. Accuracy

Base accuracy
Frequency response:
Adjustment accuracy:
Repetition accuracy:
$\pm 1 \%$ (of maximum scale value) using $1 \mathrm{M} \Omega$ remote potentiometer
$\leq 5 \%$ (of maximum scale value) using $1 \mathrm{M} \Omega$ remote potentiometer $<0.5 \%$ or $\pm 5 \mathrm{~ms}$

Technical data

10. Ambient conditions

Ambient temperature:

Storage temperature:
Transport temperature:
Relative humidity:
Pollution degree:
Vibration resistance:
Shock resistance: $\quad 15 \mathrm{~g} \mathrm{11ms}$ (in acordance with IEC 60068-2-27)

Functions

The internal potentiometer is de-activated when a remote-potentio-meter is connected! The function has to be set before connecting the relay to the supply voltage.

Asymmetric flasher pause first (lp)
When the supply voltage U is applied, the set interval $t 1$ begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/ $t 1$ illuminated), the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated), the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

Asymmetric flasher pulse first (li)

When the supply voltage U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval t1 begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay switches into off-position (yellow LED not illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t 2 has expired (green LED t 2 not illuminated), the output relay switches into on-position (yellow LED illuminated). The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

ON delay and OFF delay with control contact (ER)
The supply voltage U must be constantly applied to the device (green LED U/t1 illuminated). When the control contact S is closed, the set interval t1 begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay R switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated) the output relay switches into off-position (yellow LED not illuminated). If the control contact is opened before the interval t 1 has expired, the interval already expired is erased and is restarted with the next cycle.

ON delay and single shot leading edge voltage controlled (EWu) When the supply voltage U is applied, the set interval t 1 begins (gree LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated), the output relay switches into off-position (yellow LED not illuminated). If the supply voltage is interrupted before the interval $\mathrm{t} 1+\mathrm{t} 2$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.

ON delay and single shot leading edge with control contact (EWs)
The supply voltage U must be constantly applied to the device (green LED U/t1 illuminated). When the control contact S is closed, the set interval t1 begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay R switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Functions

Single shot leading and single shot trailing edge with control contact (WsWa)
The supply voltage U must be constantly applied to the device (green LED U/t1 illuminated). When the control contact S is closed, the output relay R switches into on-position (yellow LED illuminated) and the set interval t1 begins (green LED U/t1 flashes). After the interval t1 has expired (green LED U/t1 illuminated), the output relay R switches into off-position (yellow LED not illuminated).
If the control contact is opened, the output relay again switches into on-position (yellow LED illuminated) and the set interval t2 begins (green LED t2 flashes). After the interval t2 has expired (green LED t2 not illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times.

Pulse sequence monitoring (Wt)

When the supply voltage U is applied, the set interval t1 begins (green LED U/t1 flashes) and the output relay R1 (15-16-18) switches into on-position (yellow LED illuminated). After the interval t1 has expired (green LED U/t1 illuminated), the set interval t2 begins (green LED t2 flashes). So that the output relay R1 remains in on-position, the control contact must be closed and opened again within the set interval t 2 . If this does not happen, the output relay R1 switches into off-position (yellow LED not illuminated) and the output relay R2 (25-26-28) switches into on-position. All further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and re-applied.

Connections

Dimensions

