

NTE978/NTE978C/NTE978SM Integrated Circuit Dual Timer

Description:

The NTE978 series dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The NTE978 is a dual NTE955. Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only V_{CC} and GND. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200mA.

Features:

- Direct Replacement for 556 Timers
- Replaces Two 555 Timers
- Timing from Microseconds through Hours
- Operates in both Astable and Monostable Modes
- Adjustable Duty Cycle
- Output can Source or Sink 200mA
- Output and Supply TTL Compatible
- Temperature Stability better than 0.005% per °C
- Normally On and Normally Off Output
- Available in Three Types:

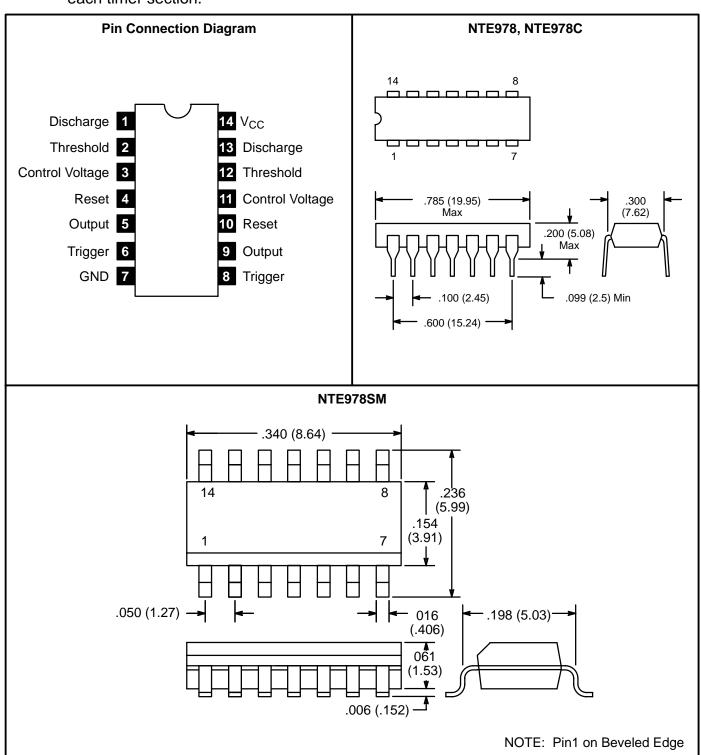
NTE978 14-Lead DIP

NTE978C 14-Lead DIP (CMOS) NTE978SM SOIC-14 (Surface Mount)

Applications:

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Linear Ramp Generator

Absolute Maximum Ratings:


Supply Voltage, V _{CC}	+18V
Power Dissipation (Note 1), P _D	
Operating Temperature Range, T _A	
Storage Temperature Range, T _{stq}	–65° to +150°C
Lead Temperature (During Soldering, 10sec Max), T ₁	+260°C

Note 1. For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of +77°C/W for NTE978 and NTE978C and +110°C/W for NTE978SM.

<u>Electrical Characteristics:</u> $(T_A = +25^{\circ}C, V_{CC} = +5V \text{ to } +15V, \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Supply Voltage	V _{CC}			4.5	_	16	V
Supply Current (Each Timer Section)	I _{CC}	Low State, Note 2	V _{CC} = 5V, R _L = ∞	_	3	6	mA
			V _{CC} = 15V, R _L = ∞	_	10	14	mA
Timing Error, Monostable Initial Accuracy				_	0.75	_	%
Drift with Temperature	1	$R_A = 1k \text{ to } 1$	_	50	_	ppm/°C	
Accuracy over Temperature	1	Note 3	_	1.5	_	%	
Drift with Supply	1		_	0.1	-	%/V	
Timing Error, Astable Initial Accuracy			_	2.25	_	%	
Drift with Temperature	1	R_A , $R_B = 1k$	_	150	_	ppm/°C	
Accuracy over Temperature	1	Note 3	_	3.0	_	%	
Drift with Supply	1		_	0.30	_	%/V	
Trigger Voltage	V _T	V _{CC} = 15V		4.5	5.0	5.5	V
		$V_{CC} = 5V$		1.25	1.67	2.0	V
Trigger Current	I _T			_	0.2	1.0	μΑ
Reset Voltage	V _R	Note 4		0.4	0.5	1.0	V
Reset Current	I _R			_	0.1	0.6	mA
Threshold Current	I _{TH}	$V_{TH} = V - Cc$	ontrol, Note 5	_	0.03	0.1	μΑ
		V _{TH} = 11.2V		_	-	250	nA
Control Voltage Level and Threshold Voltage	V _{CL}	$V_{CC} = 15V$		9	10	11	V
Tilleshold Voltage	V _{TH}	$V_{CC} = 5V$		2.6	3.33	4.0	V
Pin1, Pin13 Leakage Output High	I _{dis}			_	1	100	nA
Pin1, Pin13 Saturation Output Low		Note 6	V _{CC} = 15V, I = 15mA	_	180	300	mV
			$V_{CC} = 4.5V, I = 4.5mA$	_	80	200	mV
Output Voltage Drop (Low)	V _{OL}	V _{CC} = 15V	I _{SINK} = 10mA	_	0.1	0.25	V
			I _{SINK} = 50mA	_	0.4	0.75	V
			I _{SINK} = 100mA	_	2.0	2.75	V
			I _{SINK} = 200mA	_	2.5	_	V
		$V_{CC} = 5V$	I _{SINK} = 5mA	_	0.25	0.35	V
Output Voltage Drop (High)	V _{OH}	$V_{CC} = 15V$	I _{SOURCE} = 200mA	_	12.5	_	V
			I _{SOURCE} = 100mA	12.75	13.3	_	V
		$V_{CC} = 5V$		2.75	3.3	_	V
Rise Time of Output	t _{OLH}			_	100	_	ns
Fall Time of Output	t _{OHL}			_	100	_	ns
Matching Characteristics Initial Timing Accuracy		Note 7	_	0.1	2.0	%	
Timing Druft with Temperature		Note 7		_	±10	_	ppm/°C
Drift with Supply Voltage				_	0.2	0.5	%/V

- Note 2. Supply current when output high typically 1mA less at $V_{CC} = 5V$.
- Note 3. Tested at $V_{CC} = 5V$ and $V_{CC} = 15V$.
- Note 4. As reset voltage lowers, timing is inhibited and then the output goes low.
- Note 5. This will determine the maximum value of R_A + R_B for 15V operation. The maximum total $(R_A + R_B)$ is $20M\Omega$.
- Note 6. No protection against excessive Pin1, Pin13 current is necessary providing the package dissipation rating will not be exceeded.
- Note 7. Matching characteristics refer to, the difference between performance characteristics of each timer section.

