

Preliminary Specification

PRODUCT NAME:1.8" 160X3X128 RGB Full Colour OLED PRODUCT NO.: PFO16807

RITDISPLAY CORP. APPROVED

- 1 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
X01	INITIAL RELEASE	2007. 10. 09	

- 2 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

CONTENTS

ITEM	PAGE
1. SCOPE	4
2. WARRANTY	4
3. FEATURES	4
4. MECHANICAL DATA	5
5. MAXIMUM RATINGS	6
6. ELECTRICAL CHARACTERISTICS	7
6.1 D.C ELECTRICAL CHARACTERISTICS	
6.2 ELECTRO-OPTICAL CHARACTERISTICS	
7. INTERFACE	9
7.1 FUNCTION BLOCK DIAGRAM	
7.2 PANEL LAYOUT DIAGRAM	
7.3 PIN ASSIGNMENTS	
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP	
7.5 INTERFACE TIMING CHART	
8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT	14
8.1 POWER ON / OFF SEQUENCE	
8.2 APPLICATION CIRCUIT	
8.3 COMMAND TABLE	
9. RELIABILITY TEST CONDITIONS	16
10. EXTERNAL DIMENSION	17
11. PACKING SPECIFICATION	18
12. APPENDIXES	19

<u>1. SCOPE</u>

The purpose of this specification is to define the general provisions and quality requirements that apply to the supply of display cells manufactured by RiTdisplay. This document, together with the Module Assembly Drawing, is the highest-level specification for this product. It describes the product, identifies supporting documents and contains specifications.

2. WARRANTY

RiTdisplay warrants that the products delivered pursuant to this specification (or order) will conform to the agreed specifications for twelve (12) months from the shipping date ("Warranty Period"). RiTdisplay is obligated to repair or replace the products which are found to be defective or inconsistent with the specifications during the Warranty Period without charge, on condition that the products are stored or used as the conditions specified in the specifications. Nevertheless, RiTdisplay is not obligated to repair or replace the products without charge if the defects or inconsistency are caused by the force majeure or the reckless behaviors of the customer.

After the Warranty Period, all repairs or replacements of the products are subject to charge.

3. FEATURES

- Small molecular organic light emitting diode.
- Color : 262 K color and 65K colors
- Panel resolution : 160*128
- Driver IC : SSD1353
- Excellent Quick response time : 10µs
- Extremely thin thickness for best mechanism design. : 2.025 mm
- High contrast : 2000:1
- Wide viewing angle : 160°
- Strong environmental resistance.
- 8/9/16/18-bits 6800/8080-series Parallel Interface, Serial Peripheral Interface.
- Wide range of operating temperature : -40 to 70°C
- Anti-glare polarizer.

<u>4. MECHANICAL DATA</u>

NO	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	160 x 3x 128	dot
2	Dot Size	0.048 (W) x 0.199 (H)	mm ²
3	Dot Pitch	0.073 (W) x 0.219 (H)	mm ²
4	Aperture Rate	60	%
5	Active Area	35.015 (W) x 28.012 (H)	mm ²
6	Panel Size	42.7 (W) x 33.4 (H)	mm ²
7	Panel Thickness	2.025 ± 0.1	mm
8	Module Size	42.7 (W) x 47.5 (H) x 2.025 (T)	mm ³
9	Diagonal A/A size	1.8	inch
10	Module Weight	5.84 ± 10%	gram

- 5 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

5. MAXIMUM RATINGS

ITEM	MIN	MAX	UNIT	Condition	Remark
Supply Voltage (V _{CI})	-0.5	3.5	V	Ta = 25°C	IC maximum rating
Supply Voltage (Vcc)	10	21	V	Ta = 25°C	IC maximum rating
Operating Temp.	-40	70	°C		
Storage Temp	-40	85	°C		
Humidity		85	%		
Life Time	12,000	-	Hrs	95 cd/m ² , 50% checkerboard	Note (1)
Life Time	13,000	-	Hrs	85 cd/m ² , 50% checkerboard	Note (2)
Life Time	15,000	-	Hrs	75 cd/m ² , 50% checkerboard	Note (3)

Note:

(A) Under Vcc = 17V, Ta = 25°C, 50% RH.

- (B) Life time is defined the amount of time when the luminance has decayed to less than 50% of the initial measured luminance.
- (1) Setting of 95 cd/m 2 :
 - Master contrast setting : 0x0A
 - Frame rate : 85Hz
 - Duty setting : 1/128
- (2) Setting of 85 cd/m 2 :
 - Master contrast setting : 0x09
 - Frame rate : 85Hz
 - Duty setting : 1/128
- (3) Setting of 75 cd/m 2 :
 - Master contrast setting : 0x08
 - Frame rate : 85Hz
 - Duty setting : 1/128

6. ELECTRICAL CHARACTERISTICS

6.1 D.C ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{cc}	Driver power supply (for OLED panel)		16.5	17	17.5	V
Vcı	Low voltage power supply (for driver IC)		2.4	2.8	3.5	V
V _{DDIO}	Logic I/O operating voltage		1.6	1.8	V _{CI}	V
V _{OH}	High logic output level	lout=100uA	0.9*V _{DDIO}		V _{DDIO}	V
V _{OL}	Low logic output level	lout=100uA	0		$0.1*V_{DDIO}$	V
V _{IH}	High logic input level	lout=100uA	$0.8*V_{DDIO}$		V _{DDIO}	V
VIL	Low logic input level	lout=100uA	0		$0.2^{*}V_{DDIO}$	V
I _{CC}	Operating current for V_{CC} (No panel attached)	Contrast=FF		8.9	10	mA
I _{CI}	Operating current for V _{CI} (No panel attached)	Contrast=FF		890	980	uA
	Segment output	Contrast=FF		160	175	uA
	Current (No panel attached)	Contrast=7F		80		uA

- 7 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

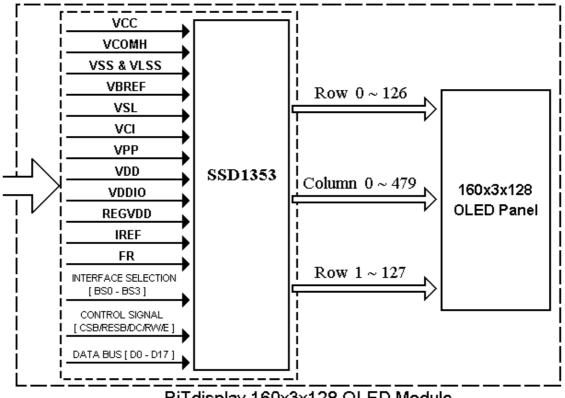
6.2 ELECTRO-OPTICAL CHARACTERISTICS

PANEL ELECTRICAL SPECIFICATIONS

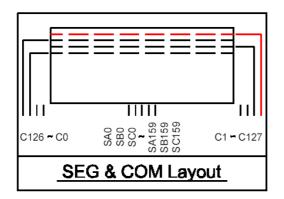
PARAMETER	MIN	TYP.	MAX	UNITS	COMMENTS
Normal mode current	-	35	37	mA	All pixels on (1)
Standby mode		3	4	mA	Standby mode
current	-	5	4	ША	10% pixels on (2)
Normal mode power	_	595	629	mW	All pixels on (1)
consumption	-	292	029	11100	
Standby mode power	_	51	68	mW	Standby mode
consumption	-	51	00		10% pixels on (2)
Pixel Luminance	75	85		cd/m ²	Display Average
Standby Luminance		20		cd/m ²	
CIEx (White)	0.24	0.28	0.32		CIE1931
CIEy (White)	0.28	0.32	0.36		CIE1931
CIEx (Red)	0.61	0.65	0.69		CIE1931
CIEy (Red)	0.30	0.34	0.38		CIE1931
CIEx (Green)	0.23	0.27	0.31		CIE1931
CIEy (Green)	0.58	0.62	0.66		CIE1931
CIEx (Blue)	0.10	0.14	0.18		CIE1931
CIEy (Blue)	0.10	0.14	0.18		CIE1931
Dark Room Contrast	2000:1				
Viewing Angle	160			degree	
Response Time		10		μs	

Normal mode condition :

- Driving Voltage : 17V
- Contrast setting : 0x09
- Frame rate : 85Hz
- Duty setting : 1/128


Standby mode condition :

- Driving Voltage : 17V
- Contrast setting : 0x03
- Frame rate : 85Hz
- Duty setting : 1/128


7. INTERFACE

7.1 FUNCTION BLOCK DIAGRAM

RiTdisplay 160x3x128 OLED Module

7.2 PANEL LAYOUT DIAGRAM

- 9 -REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

7.3 PIN ASSIGNMENTS

PIN NO	PIN NAME	DESCRIPTION
1	VCC	Power supply for panel driving voltage.
2	VCOMH	A capacitor should be connected between this pin and VSS.
3	VLSS	Analog system ground pin.
4	VSS	Ground pin.
5	VBREF	Connect to ground with a capacitor.
6	VSL	This is segment voltage reference pin.
7	VCI	Low voltage power supply.
8	VPP	Connect to VDD.
9	VDD	Power supply input for logic.
10	VDDIO	Power supply for interface logic level. It should be match with the MCU interface voltage level. VDDIO must always be equal or lower than VCI.
11.	REGVDD	Internal VDD regulator selection pin. When this pin is pulled high,internal VDD regulator is enabled. When this pin is pulled low,external VDD regulator is used.
12	BS0	
13	BS1	Interfece coloction wine
14	BS2	Interface selection pins.
15	BS3	
16	FR	It should be kept NC.
17	CSB	This pad is the chip select input. Low active.
18	RESB	This is a reset signal input. Low active.
19	DC	D/C="H": Data. D/C="L": Command.
20	RW	When connected to 8080-series MPU. WR pin. When RW ="L": Write signal input. When connected to 6800-series MPU. When RW ="H": Read. When RW ="L": Write.
21	Е	When connected to 8080-series MPU. RD pin. When E ="L": Read signal input. When connected to 6800-series MPU. Enable clock input of the 6800 series MPU.
22	D0	18 bit / 16bit / 9bit / 8 bit Data bus I/O.
23	D1	
24	D2	
25	D3	
26	D4	
27	D5	
28	D6 D7	
29 30	 D8	
30	00	

- 10 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

	2	
31	D9	
32	D10	
33	D11	
34	D12	
35	D13	
36	D14	
37	D15	
38	D16	
39	D17	
40	IREF	A resistor should be connected between this pin and VSS.
41	VSS	Ground pin.
42	VLSS	Analog system ground pin.
43	VCOMH	A capacitor should be connected between this pin and VSS.
44	VCC	Power supply for panel driving voltage.
45	NC	No connection.

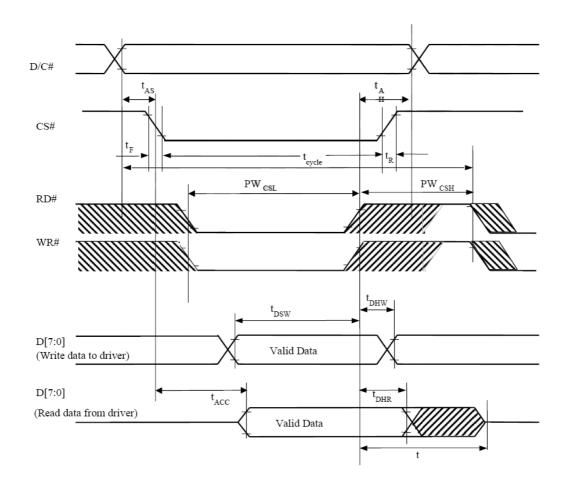
7.4 GRAPHIC DISPLAY DATA RAM ADDRESS MAP

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 160x132x18bits.

For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software.

For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown below.

	Data	A5	B5	C5	A5	B5	C5	A5		 C5	A5	B5	C5	1
	Format	A4	B4	C4	A4	B4	C4	A4		 C4	A4	B4	C4	
		A3	B3	C3	A3	B3	C3	A3		 C3	A3	B3	C3	
Common		A2	B2	C2	A2	B2	C2	A2		 C2	A2	B2	C2	
Address		A1	B1	C1	A1	B1	C1	A1		 C1	A1	B1	C1	
		A0	B0	C0	A0	B0	C0	A0		 C0	A0	B0	C0	Common
Normal	Remapped													output
0	131	6	6	6	6	6	6	6		 6	6	6	6	COM0
1	130	6	6	6										COM1
2	129													COM2
3	128		\backslash											COM3
4	127													COM4
5	126													COM5
6	125			no of b	its in thi	s cell								COM6
7	124													COM7
	:	:	:	1	:	:	:	:		 :	:	:	:	
	:	:	:	1	:	:	:	:		 :	:	:	:	
1	:	:	:	1	:	:	1	:		 :	:	:	:	
127	4													
128	3													COM128
129	2													COM129
130	1													COM130
131	0													COM131
(EC	output	SA0	SB0	SC0	SA1	SB1	SC1	SA2	T	00160	CA150	CD 150	SA159	

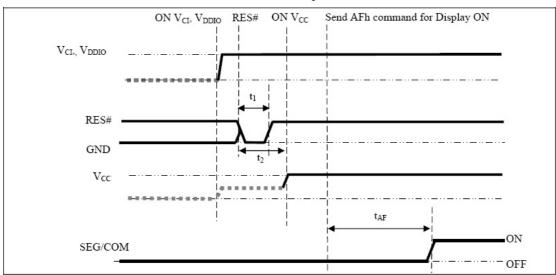

- 12 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

7.5 INTERFACE TIMING CHART

$(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, T_A = 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	0	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t _{DSW}	Write Data Setup Time	40	-	-	ns
t _{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120	-	-	ns
	Chip Select Low Pulse Width (write)	60			
PWCSH	Chip Select High Pulse Width (read)	60	-	-	ns
	Chip Select High Pulse Width (write)	60			
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

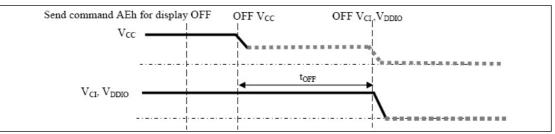
8080-series MPU parallel interface characteristics


- 13 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

8. POWER ON / OFF SEQUENCE & APPLICATION CIRCUIT 8.1 POWER ON / OFF SEQUENCE

Power ON sequence:

- 1. Power ON Vci, Vddio.
- 2. After Vci, VDDIO become stable, set RES# pin LOW (logic low) for at least 100us (t1) and then HIGH(logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us (t₂). Then Power ON V_{CC.(1)}
- 4. After Vcc become stable, send command AFh for display ON. SEG/COM will be ON after 200ms(tAF).

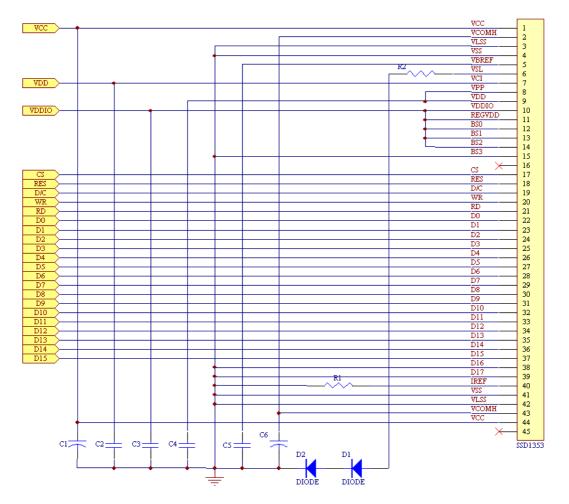


The Power ON sequence.

Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF Vcc.(1), (2)
- 3. Wait for toFF. Power OFF VCI, VDDIO. (Where Minimum toFF=0ms, Typical toFF=100ms)

The Power OFF sequence


Note:

- (1) Since an ESD protection circuit is connected between VcI, VDDIO and Vcc, Vcc becomes lower than VcI whenever VcI, VDDIO is ON and Vcc is OFF as shown in the dotted line of Vcc in above figures.
- (2) Vcc should be disabled when it is OFF.

- 14 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

8.2 APPLICATION CIRCUIT

Component:

- C1, C6 : 4.7 uF/25 ~ 35V Tantalum type capacitor.
- C2, C3, C4 : 1uF/ 16V
- C5:0.1uF/16V
- R1: 1.2M ohm 1%
- R2: 50ohm 1/4W
- D1 and D2: RB480K (ROHM)

This circuit is for 8080 16bits interface.

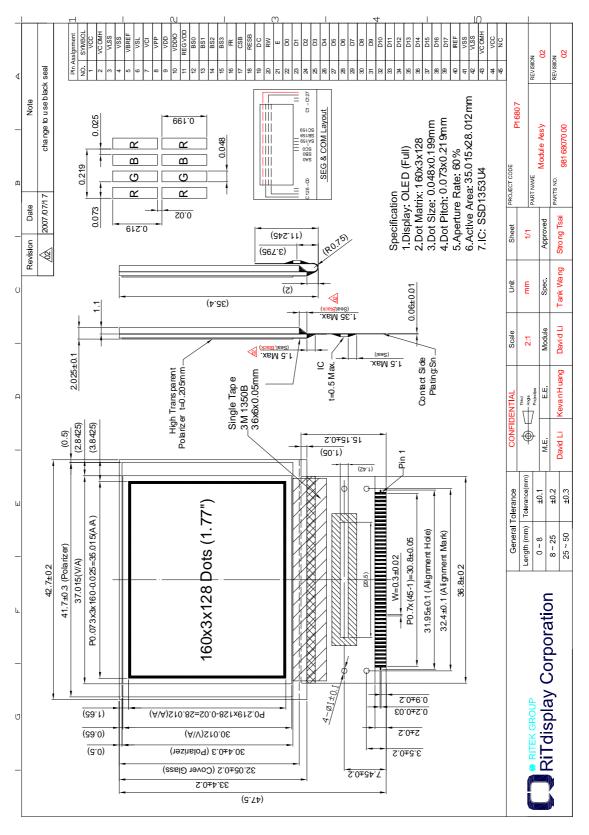
8.3 COMMAND TABLE

Refer to IC Spec : SSD1353

9. RELIABILITY TEST CONDITIONS

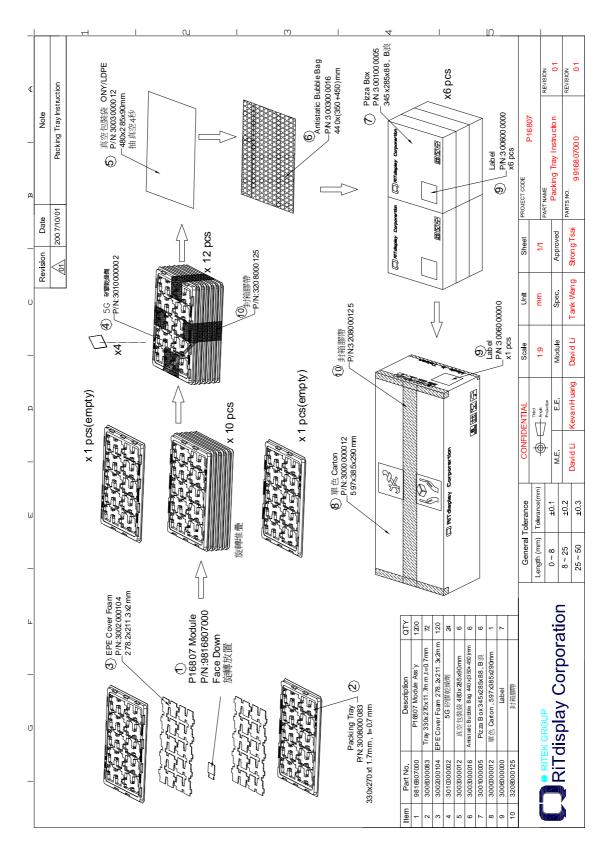
No.	Items	Specification	Quantity
1	High temp. (Non-operation)	85°C, 240hrs	5
2	High temp. (Operation)	70°C, 120hrs	5
3	Low temp. (Operation)	-40°C, 120hrs	5
4	High temp. / High humidity (Operation)	65°C, 90%RH, 96hrs	5
5	Thermal shock (Non-operation)	-40°C ~85°C (-40°C /30min; transit /3min; 85°C /30min; transit /3min) 1cycle: 66min, 20 cycles	5
6	Vibration	Frequency : 5~50HZ, 0.5G Scan rate : 1 oct/min Time : 2 hrs/axis Test axis : X, Y, Z	1 Carton
7	Drop	Height: 120cm Sequence : 1 angle \ 3 edges and 6 faces Cycles: 1	1 Carton
8	ESD (Non-operation)	Air discharge model, ±8kV, 10 times	5

Test and measurement conditions


- 1. All measurements shall not be started until the specimens attain to temperature stability.
- 2. All-pixels-on is used as operation test pattern.
- 3. The degradation of Polarizer are ignored for item 1, 4 & 5.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: > 50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.


10. EXTERNAL DIMENSION

- 17 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

11. PACKING SPECIFICATION

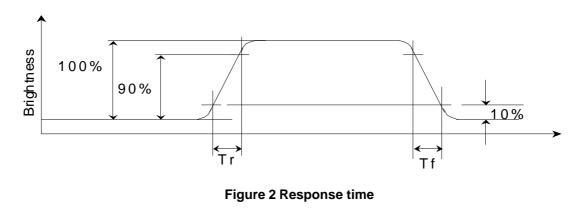
- 18 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

12. APPENDIXES

APPENDIX 1: DEFINITIONS

A. DEFINITION OF CHROMATICITY COORDINATE

The chromaticity coordinate is defined as the coordinate value on the CIE 1931 color chart for R, G, B, W.

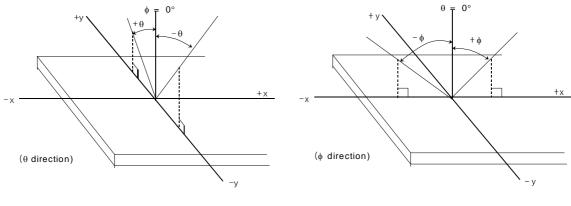

B. DEFINITION OF CONTRAST RATIO

The contrast ratio is defined as the following formula:

Contrast Ratio = Luminance of all pixels on measurement Luminance of all pixels off measurement

C. DEFINITION OF RESPONSE TIME

The definition of turn-on response time Tr is the time interval between a pixel reaching 10% of steady state luminance and 90% of steady state luminance. The definition of turn-off response time Tf is the time interval between a pixel reaching 90% of steady state luminance and 10% of steady state luminance. It is shown in Figure 2.



^{- 19 -} REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

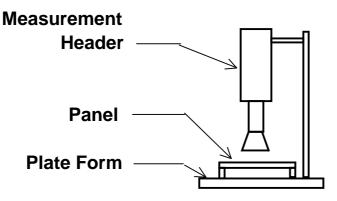
D. DEFINITION OF VIEWING ANGLE

The viewing angle is defined as Figure 3. Horizontal and vertical (H & V) angles are determined for viewing directions where luminance varies by 50% of the perpendicular value.

Vertical angles

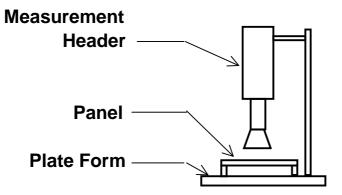
Horizontal angles

Figure 3 Viewing angle


- 20 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

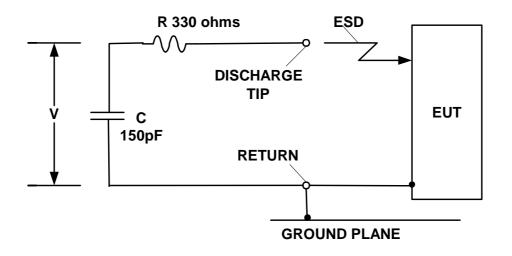
APPENDIX 2: MEASUREMENT APPARATUS

A. LUMINANCE/COLOR COORDINATE


PHOTO RESEARCH PR-705, MINOLTA CS-100

PR-705 / MINOLTA CS-100 Color Analyzer

B. CONTRAST / RESPONSE TIME / VIEWING ANGLE


WESTAR CORPORATION FPM-510

Westar FPM-510 Display Contrast / Response time / View angle Analyzer

C. ESD ON AIR DISCHARGE MODE

- 22 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.

APPENDIX 3: PRECAUTIONS

A. RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.

- 23 - REV.: X01 2007/10/09 This document contains confidential and proprietary information. Neither it nor the information contained herein shall be disclosed to others or duplicated or used for others without the express written consent of RiTdisplay.