DEVICES

FEATURES

2.5 V to 5.5 V supply operation

50 MHz serial interface
$\pm 10 \mathrm{~V}$ reference input
8-lead TSOT and MSOP packages
Pin-compatible 8-, 10-, and 12-bit current output DACs
Extended temperature range: $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Guaranteed monotonic
Four-quadrant multiplication
Power-on reset with brownout detect
<4 $\mu \mathrm{A}$ typical current consumption

APPLICATIONS

Portable battery-powered applications
Waveform generators
Analog processing
Instrumentation applications
Programmable amplifiers and attenuators
Digitally controlled calibration
Programmable filters and oscillators
Composite video
Ultrasound
Gain, offset, and voltage trimming

GENERAL DESCRIPTION

The AD5450/AD5451/AD5452 ${ }^{1}$ are CMOS 8-bit, 10-bit, and 12-bit current output digital-to-analog converters, respectively. These devices operate from a 2.5 V to 5.5 V power supply, making them suited to several applications, including batterypowered applications.

These DACs utilize a double-buffered, 3-wire serial interface that is compatible with SPI ${ }^{\ominus}$, QSPI $^{\mathrm{mw}}$, MICROWIRE ${ }^{\mathrm{mm}}$, and most DSP interface standards. Upon power-up, the internal shift register and latches are filled with zeros, and the DAC output is at zero scale.

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

As a result of manufacture on a CMOS submicron process, these DACs offer excellent 4-quadrant multiplication characteristics. The applied external reference input voltage ($\mathrm{V}_{\text {ref }}$) determines the full-scale output current. These parts can handle $\pm 10 \mathrm{~V}$ inputs on the reference despite operating from a single-supply power supply of 2.5 V to 5.5 V . An integrated feedback resistor (R_{FB}) provides temperature tracking and fullscale voltage output when combined with an external current-to-voltage precision amplifier.

The AD5450/AD5451/AD5452 DACs are available in small 8-lead TSOT and MSOP packages.

[^0]Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

AD5450/AD5451/AD5452

TABLE OF CONTENTS

Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configurations and Function Descriptions 7
Terminology 8
Typical Performance Characteristics 9
General Description 15
DAC Section 15
Circuit Operation 15
Single-Supply Applications 17
Adding Gain 17
Divider or Programmable Gain Element 17
Reference Selection 18
Amplifier Selection 18
Serial Interface 20
Microprocessor Interfacing 20
PCB Layout and Power Supply Decoupling 22
Evaluation Board for the DAC 22
Power Supplies for the Evaluation Board. 22
Outline Dimensions 26
Ordering Guide 27

REVISION HISTORY

1/05-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$; temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; \mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}} ;$ dc performance measured with OP1177, ac performance measured with AD8038, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Conditions
STATIC PERFORMANCE					
AD5450					
Resolution			8	Bits	
Relative Accuracy			± 0.25	LSB	
Differential Nonlinearity			± 0.5	LSB	Guaranteed monotonic
Total Unadjusted Error			± 0.5	LSB	
Gain Error			± 0.25	LSB	
AD5451					
Resolution			10	Bits	
Relative Accuracy			± 0.25	LSB	
Differential Nonlinearity			± 0.5	LSB	Guaranteed monotonic
Total Unadjusted Error			± 0.5	LSB	
Gain Error			± 0.25	LSB	
AD5452					
Resolution			12	Bits	
Relative Accuracy			± 0.5	LSB	
Differential Nonlinearity			± 1	LSB	Guaranteed monotonic
Total Unadjusted Error			± 1	LSB	
Gain Error			± 0.5	LSB	
Gain Error Temp Coefficient ${ }^{1}$		± 5		ppm FSR/ $/{ }^{\circ} \mathrm{C}$	
Output Leakage Current			± 1	nA	Data $=0000{ }_{H}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, lout 1
			± 10	nA	Data $=0000_{H}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, lout 1
REFERENCE INPUT ${ }^{1}$					
Reference Input Range		± 10		V	
$V_{\text {ReF }}$ Input Resistance	7	9	11	$\mathrm{k} \Omega$	Input resistance, $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {FB }}$ Feedback Resistance	7	9	11	$\mathrm{k} \Omega$	Input resistance, $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Capacitance					
Zero-Scale Code		18	22	pF	
Full-Scale Code		18	22	pF	
DIGITAL INPUTS/OUTPUTS ${ }^{1}$					
Input High Voltage, $\mathrm{V}_{\text {IH }}$	2.0			V	$V_{\text {DD }}=3.6 \mathrm{~V}$ to 5 V
	1.7			V	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V
Input Low Voltage, VIL			0.8	V	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
			0.7	V	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 2.7 V
Output High Voltage, Voн	$V_{\text {DD }}-1$			V	$V_{\text {DD }}=4.5 \mathrm{~V}$ to 5 V , I SOURCE $=200 \mu \mathrm{~A}$
	$V_{D D}-0.5$			V	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V, ISource $=200 \mu \mathrm{~A}$
Output Low Voltage, Vol			0.4	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5 V , $\mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A}$
			0.4	V	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V, $\mathrm{I}_{\text {IINK }}=200 \mu \mathrm{~A}$
Input Leakage Current, IIL			± 1	nA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
			± 10	nA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Input Capacitance			10	pF	

AD5450/AD5451/AD5452

Parameter	Min	Typ	Max	Unit	Conditions	
DYNAMIC PERFORMANCE ${ }^{1}$						
Reference-Multiplying BW	10			MHz	$\mathrm{V}_{\text {REF }}= \pm 3.5 \mathrm{~V}$, DAC loaded with all 1 s	
Output Voltage Settling Time					$V_{\text {REF }}=10 \mathrm{~V}$, R LOAD $=100 \Omega$; DAC latch alternately loaded with 0 s and 1 s	
Measured to $\pm 1 \mathrm{mV}$ of FS		100	110	ns		
Measured to $\pm 4 \mathrm{mV}$ of FS		24	40	ns		
Measured to $\pm 16 \mathrm{mV}$ of FS		16	33	ns		
Digital Delay		20	40	ns	Interface delay time	
10\% to 90\% Settling Time		10	30	ns	Rise and fall time, $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{RLOAD}=100 \Omega$	
Digital-to-Analog Glitch Impulse		2		nV -s	1 LSB change around major carry, $\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$	
Output Capacitance						
lout1		13		pF	DAC latches loaded with all 0s	
		28		pF	DAC latches loaded with all 1 s	
lout2		18		pF	DAC latches loaded with all 0s	
		5		pF	DAC latches loaded with all 1 s	
Digital Feedthrough		0.5		n - s	Feedthrough to DAC output with $\overline{\mathrm{CS}}$ high, and alternate loading of all 0 s and all 1 s	
Analog THD		83		dB	$V_{\text {REF }}=3.5 \mathrm{~V}$ p-p, all 1 s loaded, $\mathrm{f}=1 \mathrm{kHz}$	
Digital THD					Clock $=1 \mathrm{MHz}$, V V RFF $=3.5 \mathrm{~V}$	
50 kHz fout		71		dB		
20 kHz fout		77		dB		
Output Noise Spectral Density		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	@ 1 kHz	
SFDR Performance (Wideband)					Clock $=1 \mathrm{MHz}$, $\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$	
50 kHz fout		78		dB		
20 kHz fout		74		dB		
SFDR Performance (Narrow Band)					Clock $=1 \mathrm{MHz}$, $\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$	
50 kHz fout		87		dB		
20 kHz fout		85		dB		
Intermodulation Distortion		79		dB	$\mathrm{f}_{1}=20 \mathrm{kHz}, \mathrm{f}_{2}=25 \mathrm{kHz}$, clock $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$	
POWER REQUIREMENTS						
Power Supply Range		2.5		5.5	V	
ldo		0.4	10	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or V_{DD}	
			0.6	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$	
Power Supply Sensitivity ${ }^{1}$			0.001	\%/\%	$\Delta V_{\text {DD }}= \pm 5 \%$	

[^1]
TIMING CHARACTERISTICS

All input signals are specified with $\operatorname{tr}=\mathrm{tf}=1 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\text {IH }}\right) / 2 . \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$; temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (see Figure 2); all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V	Unit	Conditions/Comments
$\mathrm{f}_{\text {scık }}$	50	MHz max	Maximum clock frequency
t_{1}	20	ns min	SCLK cycle time
t_{2}	8	ns min	SCLK high time
t_{3}	8	$n \mathrm{nmin}$	SCLK low time
t_{4}	8	ns min	$\overline{\text { SYNC }}$ falling edge to SCLK active edge setup time
t_{5}	5	ns min	Data setup time
t_{6}	4.5	$n \mathrm{nmin}$	Data hold time
t_{7}	5	$n \mathrm{n}$ min	$\overline{\text { SYNC }}$ rising edge to SCLK active edge
t_{8}	30	ns min	Minimum $\overline{\text { SYNC }}$ high time

${ }^{1}$ Guaranteed by design and characterization, not subject to production test.

Figure 2. Timing Diagram

AD5450/AD5451/AD5452

ABSOLUTE MAXIMUM RATINGS

Transient currents of up to 100 mA do not cause SCR latch-up. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +7 V
V REF, $\mathrm{R}_{\text {FB }}$ to GND	-12 V to +12 V
lout1 to GND	-0.3 V to +7 V
Input Current to Any Pin except Supplies	$\pm 10 \mathrm{~mA}$
Logic Inputs and Output ${ }^{1}$	-0.3 V to VDD +0.3 V
Operating Temperature Range, Extended	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(Y Version)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$150^{\circ} \mathrm{C}$
Junction Temperature	
$\theta_{\text {JA }}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
\quad 8-lead MSOP	$211^{\circ} \mathrm{C} / \mathrm{W}$
\quad 8-lead TSOT	$300^{\circ} \mathrm{C}$
Lead Temperature, Soldering $(10 \mathrm{~s})$	$235^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature $(<20 \mathrm{~s})$	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{1}$ Overvoltages at SCLK, $\overline{\text { SYNC, }}$, and SDIN are clamped by internal diodes.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. TSOT Pin Configuration

Figure 4. MSOP Pin Configuration

Table 4. Pin Function Descriptions

TSOT	MSOP	Mnemonic	Function		
8	1	lout1	DAC Current Output. Ground Pin.		
7	2	GND	SCLK		Serial Clock Input. By default, data is clocked in the input shift register upon the falling edge of the serial
:---					
clock input. Alternatively, by means of the serial control bits, the device may be configured such that data is					
clocked in the shift register upon the rising edge of SCLK.					
Serial Data Input. Data is clocked in the 16-bit input register upon the active edge of the serial clock input.					
By default, in power-up mode, data is clocked in the shift register upon the falling edge of SCLK. The					
control bits allow the user to change the active edge to a rising edge.					
Active Low Control Input. This is the frame synchronization signal for the input data. Data is loaded to the					
shift register upon the active edge of the following clocks.					
4					

AD5450/AD5451/AD5452

TERMINOLOGY

Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of the full-scale reading.

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1-LSB change between any two adjacent codes. A specified differential nonlinearity of -1 LSB maximum over the operating temperature range ensures monotonicity.

Gain Error

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {REF }}-1$ LSB. Gain error of the DACs is adjustable to zero with external resistance.

Output Leakage Current

Output leakage current is the current that flows into the DAC ladder switches when they are turned off. For the Iour 1 terminal, it can be measured by loading all 0 s to the DAC and measuring the Iour 1 current.

Output Capacitance

Capacitance from Iour 1 to AGND.

Output Current Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full-scale input change. For these devices, it is specified with a 100Ω resistor to ground. The settling time specification includes the digital delay from the $\overline{\text { SYNC }}$ rising edge to the full-scale output change.

Digital-to-Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-s or nV-s, depending on whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs may be capacitively coupled through the device and produce noise on the Iout pins. This noise is coupled from the outputs of the device onto follow-on circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

This is the error due to capacitive feedthrough from the DAC reference input to the DAC Iout 1 terminal when all 0s are loaded to the DAC.

Total Harmonic Distortion (THD)

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower-order harmonics, such as second to fifth, are included.

$$
T H D=20 \log \frac{\sqrt{\mathrm{~V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}}}{\mathrm{~V}_{1}}
$$

Digital Intermodulation Distortion (IMD)

Second-order intermodulation measurements are the relative magnitudes of the fa and fb tones generated digitally by the DAC and the second-order products at $2 \mathrm{fa}-\mathrm{fb}$ and $2 \mathrm{fb}-\mathrm{fa}$.

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device provides the specified characteristics.

Spurious-Free Dynamic Range (SFDR)

The usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. SFDR is the measure of difference in amplitude between the fundamental and the largest harmonically or nonharmonically related spur from dc to full Nyquist bandwidth (half the DAC sampling rate or $\mathrm{f}_{\mathrm{s}} / 2$). Narrow-band SFDR is a measure of SFDR over an arbitrary window size, in this case 50% of the fundamental. Digital SFDR is a measure of the usable dynamic range of the DAC when the signal is a digitally generated sine wave.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. INL vs. Code (8-Bit DAC)

Figure 6. INL vs. Code (10-Bit DAC)

Figure 7. INL vs. Code (12-Bit DAC)

Figure 8. DNL vs. Code (8-Bit DAC)

Figure 9. DNL vs. Code (10-Bit DAC)

Figure 10. DNL vs. Code (12-Bit DAC)

AD5450/AD5451/AD5452

Figure 11. INL vs. Reference Voltage

Figure 12. DNL vs. Reference Voltage

Figure 13. TUE vs. Code (8-bit DAC)

Figure 14. TUE vs. Code (10-bit DAC)

Figure 15. TUE vs. Code (12-bit DAC)

Figure 16. TUE vs. Reference Voltage

Figure 17. Gain Error (LSB) vs. Temperature

Figure 18. Gain Error (LSB) vs. Reference Voltage

Figure 19. Iout 1 Leakage Current vs. Temperature

Figure 20. Supply Current vs. Logic Input Voltage

Figure 21. Supply Current vs. Temperature

Figure 22. Supply Current vs. Update Rate

Figure 23. Threshold Voltage vs. Supply Voltage

Figure 24. Reference Multiplying Bandwidth vs. Frequency and Code

Figure 25. Reference Multiplying Bandwidth—All Ones Loaded

Figure 26. Reference Multiplying Bandwidth vs. Frequency and Compensation Capacitor

Figure 27. Midscale Transition $V_{\text {REF }}=0 \mathrm{~V}$

Figure 28. Midscale Transition $V_{\text {REF }}=3.5 \mathrm{~V}$

Figure 29. Power-Supply Rejection vs. Frequency

Figure 30. THD + Noise vs. Frequency

Figure 31. Wideband SFDR vs. fout Frequency

Figure 32. Wideband SFDR, $f_{\text {Out }}=20 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 33. Wideband SFDR, fout $=50 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 34. Narrow-Band SFDR, fout $=20 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 35. Narrow-Band SFDR, $f_{\text {Out }}=50 \mathrm{kHz}$, Clock $=1 \mathrm{M}$

Figure 36. Narrow-Band IMD, $f_{\text {OUT }}=20 \mathrm{kHz}, 25 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 37. Wideband $I M D, f_{\text {Out }}=20 \mathrm{kHz}, 25 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 38. Output Noise Spectral Density

GENERAL DESCRIPTION

DAC SECTION

The AD5450, AD5451 and AD5452 are 8-, 10- and 12-bit current output DACs, consisting of a segmented (4 bits) inverting R-2R ladder configuration. A simplified diagram for the 12-bit AD5452 is shown in Figure 39.

Figure 39. Simplified Ladder
The feedback resistor R_{FB} has a value of R . The value of R is typically $9 \mathrm{k} \Omega$ (minimum $7 \mathrm{k} \Omega$ and maximum $11 \mathrm{k} \Omega$). If Iour 1 is kept at the same potential as GND, a constant current flows in each ladder leg, regardless of digital input code. Therefore, the input resistance presented at $\mathrm{V}_{\text {REF }}$ is always constant and nominally of value R. The DAC output (Iour 1) is code dependent, producing various resistances and capacitances. When choosing the external amplifier, take into account the variation in impedance generated by the DAC on the amplifier's inverting input node.

Access is provided to the $\mathrm{V}_{\mathrm{REF}}, \mathrm{R}_{\mathrm{FB}}$, and Iout 1 terminals of the DAC, making the device extremely versatile and allowing it to be configured in several different operating modes; for example, it can provide a unipolar output or to provide 4-quadrant multipli-cation in bipolar mode. Note that a matching switch is used in series with the internal $R_{F B}$ feedback resistor. If users attempt to measure R_{FB}, power must be applied to V_{DD} to achieve continuity.

CIRCUIT OPERATION

Unipolar Mode

Using a single op amp, these devices can easily be configured to provide a 2-quadrant multiplying operation or a unipolar output voltage swing, as shown in Figure 40. When an output amplifier is connected in unipolar mode, the output voltage is given by:

$$
V_{O U T}=-\frac{D}{2^{n}} \times V_{R E F}
$$

where:
D is the fractional representation of the digital word loaded to the DAC.

$$
\begin{aligned}
\mathrm{D} & =0 \text { to } 255(8 \text {-bit AD5450) } \\
& =0 \text { to } 1023 \text { (10-bit AD5451) } \\
& =0 \text { to } 4095(12 \text {-bit AD5452) }
\end{aligned}
$$

n is the number of bits.

Note that the output voltage polarity is opposite to the $V_{\text {ReF }}$ polarity for dc reference voltages.

Figure 40. Unipolar Operation
These DACs are designed to operate either with negative or positive reference voltages. The $V_{D D}$ power pin is only used by the internal digital logic to drive the on and off states of the DAC switches.

These DACs also are designed to accommodate ac reference input signals in the range of -10 V to +10 V .

With a fixed 10 V reference, the circuit shown in Figure 40 gives a unipolar 0 V to -10 V output voltage swing. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 2-quadrant multiplication.

Table 5 shows the relationship between the digital code and the expected output voltage for a unipolar operation using the 8 -bit AD5450.

Table 5. Unipolar Code Table for AD5450

Digital Input	Analog Output (V)
11111111	$-V_{\text {REF }}(255 / 256)$
10000000	$-V_{\text {REF }}(128 / 256)=-V_{\text {REF }} / 2$
00000001	$-V_{\text {REF }}(1 / 256)$
00000000	$-V_{\text {REF }}(0 / 256)=0$

Bipolar Operation

In some applications, it may be necessary to generate a full 4-quadrant multiplying operation or a bipolar output swing. This can be easily accomplished by using another external amplifier and some external resistors, as shown in Figure 41. In this circuit, the second amplifier, A2, provides a gain of 2. Biasing the external amplifier with an offset from the reference voltage results in full 4 -quadrant multiplying operation. The transfer function of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero $\left(\mathrm{V}_{\text {OUT }}=-\mathrm{V}_{\text {REF }}\right)$ to midscale ($\mathrm{V}_{\text {out }}-0 \mathrm{~V}$) to full scale ($\mathrm{V}_{\text {out }}=+\mathrm{V}_{\text {ReF }}$).

AD5450/AD5451/AD5452

$V_{O U T}=\left(V_{R E F} \times \frac{D}{2^{n-1}}\right)-V_{\text {REF }}$
where:
D is the fractional representation of the digital word loaded to the DAC.
$D=0$ to 255 (8-bit AD5450)

$$
=0 \text { to } 1023 \text { (10-bit AD5451) }
$$

$$
=0 \text { to } 4095 \text { (12-bit AD5452) }
$$

n is the resolution of the DAC.
When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 4-quadrant multiplication. Table 6 shows the relationship between the digital code and the expected output voltage for a bipolar operation using the 8-bit AD5450.

Table 6. Bipolar Code Table for AD5450

Digital Input	Analog Output (V)
11111111	$+V_{\text {REF }}(127 / 128)$
10000000	0
00000001	$-V_{\text {REF }}(127 / 128)$
00000000	$-V_{\text {REF }}(128 / 128)$

Figure 41. Bipolar Operation (4-Quadrant Multiplication)

Stability

In the I-to-V configuration, the Iout of the DAC and the inverting node of the op amp must be connected as close as possible, and proper PCB layout techniques must be employed. Because every code change corresponds to a step function, gain peaking may occur if the op amp has limited gain bandwidth product (GBP) and there is excessive parasitic capacitance at the inverting node. This parasitic capacitance introduces a pole into the open-loop response, which can cause ringing or instability in the closed-loop applications circuit.

An optional compensation capacitor, C 1 , may be added in parallel with R_{FB} for stability, as shown in Figure 40 and Figure 41. Too small a value of C 1 can produce ringing at the output, and too large a value can adversely affect the settling time. C1 should be found empirically, but 1 pF to 2 pF is generally adequate for the compensation.

SINGLE-SUPPLY APPLICATIONS

Voltage-Switching Mode

Figure 42 shows these DACs operating in the voltage-switching mode. The reference voltage, $\mathrm{V}_{\text {IN }}$, is applied to the Iour 1 pin, and the output voltage is available at the $\mathrm{V}_{\text {ref }}$ terminal. In this configuration, a positive reference voltage results in a positive output voltage, making single-supply operation possible. The output from the DAC is voltage at a constant impedance (the DAC ladder resistance); therefore, an op amp is necessary to buffer the output voltage. The reference input no longer sees constant input impedance, but one that varies with code; therefore, the voltage input should be driven from a low impedance source.

Figure 42. Single-Supply Voltage-Switching Mode
It is important to note that with this configuration $\mathrm{V}_{\text {IN }}$ is limited to low voltages because the switches in the DAC ladder do not have the same source-drain drive voltage. As a result, their on resistance differs, which degrades the integral linearity of the DAC. Also, Vin must not go negative by more than 0.3 V , or an internal diode turns on, causing the device to exceed the maximum ratings. In this type of application, the full range of multiplying capability of the DAC is lost.

Positive Output Voltage

Note that the output voltage polarity is opposite to the $\mathrm{V}_{\text {REF }}$ polarity for dc reference voltages. To achieve a positive voltage
output, an applied negative reference to the input of the DAC is preferred over the output inversion through an inverting amplifier because of the resistors' tolerance errors. To generate a negative reference, the reference can be level-shifted by an op amp such that the Vout and GND pins of the reference become the virtual ground and -2.5 V , respectively, as shown in Figure 43.

Figure 43. Positive Output Voltage with Minimum Components

ADDING GAIN

In applications in which the output voltage is required to be greater than $\mathrm{V}_{\text {IN }}$, gain can be added with an additional external amplifier, or it can be achieved in a single stage. It is important to consider the effect of the temperature coefficients of the DAC's thin-film resistors. Simply placing a resistor in series with the R_{FB} resistor causes mismatches in the temperature coefficients, and results in larger gain temperature coefficient errors. Instead, increase the gain of the circuit by using the recommended configuration shown in Figure 44. R1, R2, and R3 should have similar temperature coefficients, but they need not match the temperature coefficients of the DAC. This approach is recommended in circuits where gains greater than 1 are required.

DIVIDER OR PROGRAMMABLE GAIN ELEMENT

Current-steering DACs are very flexible and lend themselves to many different applications. If this type of DAC is connected as the feedback element of an op amp and R_{FB} is used as the input resistor as shown in Figure 45, then the output voltage is inversely proportional to the digital input fraction, D.

AD5450/AD5451/AD5452

For $\mathrm{D}=1-2^{-n}$, the output voltage is

$$
V_{\text {OUT }}=\frac{-V_{I N}}{D}=\frac{-V_{I N}}{\left(1-2^{-n}\right)}
$$

As D is reduced, the output voltage increases. For small values of the digital fraction D , it is important to ensure that the amplifier does not saturate and that the required accuracy is met. For example, an 8 -bit DAC driven with the binary code $0 x 10(00010000)$, i.e., 16 decimal, in the circuit of Figure 45 should cause the output voltage to be 16 times $\mathrm{V}_{\text {IN }}$.

Figure 45. Current-Steering DAC Used as a Divider or Programmable Gain Element

However, if the DAC has a linearity specification of ± 0.5 LSB, then D can have the weight anywhere in the range $15.5 / 256$ to $16.5 / 256$ so that the possible output voltage is in the range $15.5 \mathrm{~V}_{\text {IN }}$ to $16.5 \mathrm{~V}_{\text {IN }} —$ an error of 3%, even though the DAC itself has a maximum error of 0.2%.

DAC leakage current is also a potential error source in divider circuits. The leakage current must be counterbalanced by an opposite current supplied from the op amp through the DAC. Because only a fraction, D, of the current in the $V_{\text {REF }}$ terminal is routed to the Iout 1 terminal, the output voltage has to change as follows:

Output Error Voltage Due to Leakage $=($ Leakage $\times R) / D$
where R is the DAC resistance at the $V_{\text {Ref }}$ terminal.
For a DAC leakage current of $10 \mathrm{nA}, \mathrm{R}=10 \mathrm{k} \Omega$, and a gain (i.e., $1 / \mathrm{D}$) of 16 the error voltage is 1.6 mV .

REFERENCE SELECTION

When selecting a reference for use with this series of currentoutput DACs, pay attention to the reference's output voltage temperature coefficient specification. This parameter not only affects the full-scale error, but also may affect the linearity (INL and DNL) performance. The reference temperature coefficient should be consistent with the system accuracy specifications. For example, an 8 -bit system is required to hold its overall
specification to within 1 LSB over the temperature range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, and the system's maximum temperature drift should be less than $78 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

A 12-bit system within 2 LSBs requires a maximum drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a precision reference with a low output temperature coefficient minimizes this error source. Table 7 suggests some of the dc references available from Analog Devices that are suitable for use with this range of currentoutput DACs.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. The input offset voltage of an op amp is multiplied by the variable gain of the circuit due to the code-dependent output resistance of the DAC. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the amplifier's input offset voltage. This output voltage change is superimposed on the desired change in output between the two codes and gives rise to a differential linearity error, which if large enough, could cause the DAC to be nonmonotonic.

The input bias current of an op amp also generates an offset at the voltage output as a result of the bias current flowing in the feedback resistor R_{Fb}. Most op amps have input bias currents low enough to prevent significant errors in 12-bit applications. However, for 14-bit applications, some consideration should be given to selecting an appropriate amplifier.

Common-mode rejection of the op amp is important in voltage-switching circuits, because it produces a codedependent error at the voltage output of the circuit. Most op amps have adequate common-mode rejection for use at 8 -, 10-, and 12-bit resolution.

Provided the DAC switches are driven from true wideband low impedance sources ($\mathrm{V}_{\text {IN }}$ and AGND), they settle quickly. Consequently, the slew rate and settling time of a voltageswitching DAC circuit is determined largely by the output op amp . To obtain minimum settling time in this configuration, it is important to minimize capacitance at the $V_{\text {ref }}$ node (the voltage output node in this application) of the DAC. This is done by using low input-capacitance buffer amplifiers and careful board design.

Most single-supply circuits include ground as part of the analog signal range, which in turns requires an amplifier that can handle rail-to-rail signals. There is a large range of single-supply amplifiers available from Analog Devices.

AD5450/AD5451/AD5452

Table 7. Suitable ADI Precision References

Reference	Output Voltage	Initial Tolerance	Temperature Drift	$\mathbf{0 . 1 ~ H z ~ t o ~} \mathbf{1 0 ~ H z}$ noise	Package
ADR01	10 V	0.1%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$20 \mu \mathrm{Vp-p}$	SC70, TSOT, SOIC
ADR02	5 V	0.1%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{pp}-\mathrm{p}$	SC70, TSOT, SOIC
ADR03	2.5 V	0.2%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$10 \mu \mathrm{Vp-p}$	SC70, TSOT, SOIC
ADR425	5 V	0.04%	$3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$3.4 \mathrm{~V} \mathrm{p}-\mathrm{p}$	MSOP, SOIC

Table 8. Suitable ADI Precision Op Amps

Part	Max Supply Voltage $\mathbf{(V)}$	$\mathbf{V}_{\mathbf{o s}}(\boldsymbol{m a x})(\boldsymbol{\mu} \mathbf{V})$	$\mathbf{I}_{\mathbf{B}}(\boldsymbol{m a x})(\mathbf{n A})$	GBP $(\mathbf{M H z})$	Slew Rate $(\mathbf{V} / \boldsymbol{\mu s})$
OP97	± 20	25	0.1	0.9	0.2
OP1177	± 18	60	2	1.3	0.7
AD8551	+6	5	0.05	1.5	0.4

Table 9. Suitable ADI High Speed Op Amps

Part	Max Supply Voltage (V)	BW @ AcL (MHz)	Slew Rate (V/ $\boldsymbol{\mu s})$	Vos $(\mathbf{m a x})(\boldsymbol{\mu V})$	Is $(\mathbf{m a x})(\mathbf{n A})$
AD8065	± 12	145	180	1500	0.01
AD8021	± 12	200	100	1000	1000
AD8038	± 5	350	425	3000	0.75
AD9631	± 5	320	1300	10000	7000

AD5450/AD5451/AD5452

SERIAL INTERFACE

The AD5450/AD5451/AD5452 have an easy-to-use 3-wire interface that is compatible with SPI/QSPI/MICROWIRE and DSP interface standards. Data is written to the device in 16-bit words. This 16 -bit word consists of two control bits and either 8, 10, or 12 data bits, as shown in Figure 46, Figure 47, and Figure 48. The AD5452 uses 12 bits and ignores the 2 LSBs, the AD5451 uses 10 bits and ignores the 4 LSBs, and the AD5450 uses 8 bits and ignores the 6 LSBs.

DAC Control Bits C1, C0

Control Bits C1 and C0 allow the user to load and update the new DAC code and to change the active clock edge. By default, the shift register clocks data upon the falling edge; this can be changed via the control bits. If changed, the DAC core is inoperative until the next data frame. A power cycle resets the core to default condition. On-chip power-on reset circuitry ensures that the device powers on with zero scale loaded to the DAC register and Iout line.

Table 10. DAC Control Bits

C1	C0	Function Implemented
0	0	Load and update(power-on default)
0	1	Reserved
1	0	Reserved
1	1	Clock data to shift register upon rising edge

SYNC Function

$\overline{\text { SYNC }}$ is an edge-triggered input that acts as a framesynchronization signal and chip enable. Data can only be transferred to the device while $\overline{\text { SYNC }}$ is low. To start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low, observing the minimum $\overline{\text { SYNC }}$ falling to SCLK falling edge setup time, t_{4}. To minimize the power consumption of the device, the interface powers up fully only when the device is being written to, that is, upon the falling edge of $\overline{\text { SYNC. The SCLK and SDIN input }}$ buffers are powered down upon the rising edge of $\overline{S Y N C}$.

After the falling edge of the $16^{\text {th }}$ SCLK pulse, bring $\overline{\text { SYNC }}$ high to transfer data from the input shift register to the DAC register.

Figure 46. AD5450 8-Bit Input Shift Register Contents

Figure 47. AD5451 10-Bit Input Shift Register Contents

Figure 48. AD5452 12-Bit Input Shift Register Contents

MICROPROCESSOR INTERFACING

Microprocessor interfacing to the AD5450/AD5451/AD5452 DAC is through a serial bus that uses standard protocol and is compatible with microcontrollers and DSP processors. The communication channel is a 3-wire interface consisting of a clock signal, a data signal, and a synchronization signal. The AD5450/AD5451/AD5452 require a 16 -bit word, with the default being data valid upon the falling edge of SCLK, but this is changeable using the control bits in the data-word.

ADSP-21xx-to-AD5450/AD5451/AD5452 Interface

The ADSP-21xx family of DSPs is easily interfaced to a AD5450/AD5451/AD5452 DAC without the need for extra glue logic. Figure 49 is an example of an SPI interface between the DAC and the ADSP-2191M. SCK of the DSP drives the serial data line, SDIN. $\overline{\text { SYNC }}$ is driven from one of the port lines, in this case SPIxSEL.

Figure 49. ADSP-2191 SPI-to-AD5450/AD5451/AD5452 Interface
A serial interface between the DAC and DSP SPORT is shown in Figure 50. In this example, SPORT0 is used to transfer data to the DAC shift register. Transmission is initiated by writing a word to the Tx register after the SPORT has been enabled. In a write sequence, data is clocked out upon each rising edge of the DSP's serial clock and clocked in the DAC input shift register upon the falling edge of its SCLK. The update of the DAC output takes place upon the rising edge of the $\overline{\text { SYNC }}$ signal.

Figure 50. ADSP-2101/ADSP-2103/ADSP-2191 SPORT-toAD5450/AD5451/AD5452 Interface

Communication between two devices at a given clock speed is possible when the following specifications are compatible: frame $\overline{\text { SYNC }}$ delay and frame $\overline{\text { SYNC }}$ setup-and-hold, data delay and data setup-and-hold, and SCLK width. The DAC interface expects a $\mathrm{t}_{4} \overline{(\mathrm{SYNC}}$ falling edge to SCLK falling edge setup time) of 13 ns minimum. See the ADSP-21xx User Manual for information on clock and frame $\overline{\text { SYNC }}$ frequencies for the SPORT register. Table 11 shows the setup for the SPORT control register.

Table 11. SPORT Control Register Setup

Name	Setting	Description
TFSW	1	Alternate framing
INVTFS	1	Active low frame signal
DTYPE	00	Right-justify data
ISCLK	1	Internal serial clock
TFSR	1	Frame every word
ITFS	1	Internal framing signal
SLEN	1111	16-bit data-word

ADSP-BF5xx-to-AD5450/AD5451/AD5452 Interface

The ADSP-BF5xx family of processors has an SPI-compatible port that enables the processor to communicate with SPIcompatible devices. A serial interface between the BlackFin ${ }^{*}$ processor and the AD5450/AD5451/AD5452 DAC is shown in Figure 51. In this configuration, data is transferred through the MOSI (master output-slave input) pin. $\overline{\text { SYNC }}$ is driven by the SPI chip select pin, which is a reconfigured programmable flag pin.

Figure 51. ADSP-BF5xx-to-AD5450/AD5451/AD5452 Interface

The ADSP-BF5xx processor incorporates channel synchronous serial ports (SPORT). A serial interface between the DAC and the DSP SPORT is shown in Figure 52. When the SPORT is enabled, initiate transmission by writing a word to the Tx register. The data is clocked out upon each rising edge of the DSP's serial clock and clocked into the DAC's input shift register upon the falling edge its SCLK. The DAC output is updated by using the transmit frame synchronization (TFS) line to provide a SYNC signal.

Figure 52. ADSP-BF5xx SPORT-to-AD5450/AD5451/AD5452 Interface

80C51/80L51-to-AD5450/AD5451/AD5452 Interface

A serial interface between the DAC and the 80C51/80L51 is shown in Figure 53. TxD of the 80C51/80L51 drives SCLK of the DAC serial interface, while RxD drives the serial data line,

SDIN. P1.1 is a bit-programmable pin on the serial port and is used to drive $\overline{\mathrm{SYNC}}$. As data is transmitted to the switch, P1.1 is taken low. The 80C51/80L51 transmit data only in 8-bit bytes; therefore, only eight falling clock edges occur in the transmit cycle.

To load data correctly to the DAC, P1.1 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. Data on RxD is clocked out of the microcontroller on the rising edge of TxD and is valid upon the falling edge. As a result, no glue logic is required between the DAC and microcontroller interface. P1.1 is taken high following the completion of this cycle. The 80C51/80L51 provide the LSB of its SBUF register as the first bit in the data stream. The DAC input register acquires its data with the MSB as the first bit received. The transmit routine should take this into account.

Figure 53. 80C51/80L51-to-AD5450/AD5451/AD5452 Interface

MC68HC11-to-AD5450/AD5451/AD5452 Interface

Figure 54 is an example of a serial interface between the DAC and the MC68HC11 microcontroller. The serial peripheral interface (SPI) on the MC68HC11 is configured for master $\operatorname{mode}(\mathrm{MSTR})=1$, clock polarity bit $(\mathrm{CPOL})=0$, and clock phase bit $(\mathrm{CPHA})=1$. The SPI is configured by writing to the SPI control register (SPCR); see the $68 \mathrm{HC11}$ User Manual. SCK of the 68 HC 11 drives the SCLK of the DAC interface; the MOSI output drives the serial data line (SDIN) of the AD5516.

The $\overline{\text { SYNC }}$ signal is derived from a port line (PC7). When data is being transmitted to the AD5516, the SYNC line is taken low (PC7). Data appearing on the MOSI output is valid upon the falling edge of SCK. Serial data from the $68 \mathrm{HC11}$ is transmitted in 8-bit bytes with only eight falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. To load data to the DAC, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC. PC7 is taken high at the end of this procedure.

Figure 54. MC68HC11-to-AD5450/AD5451/AD5452 Interface

AD5450/AD5451/AD5452

If the user wants to verify the data previously written to the input shift register, the SDO line can be connected to MISO of the MC68HC11. In this configuration with $\overline{\mathrm{SYNC}}$ low, the shift register clocks data out upon the rising edges of SCLK.

MICROWIRE-to-AD5450/AD5451/AD5452 Interface

Figure 55 shows an interface between the DAC and any MICROWIRE-compatible device. Serial data is shifted out upon the falling edge of the serial clock, SK, and is clocked in the DAC input shift register upon the rising edge of SK, which corresponds to the falling edge of the DAC's SCLK.

Figure 55. MICROWIRE-to-AD5450/AD5451/AD5452 Interface

PIC16C6x/7x-to-AD5450/AD5451/AD5452 Interface

The PIC16C6x/7x synchronous serial port (SSP) is configured as an SPI master with the clock polarity bit $(C K P)=0$. This is done by writing to the synchronous serial port control register (SSPCON); see the PIC16/17 Microcontroller User Manual.

In this example, I/O Port RA1 is used to provide a $\overline{\text { SYNC }}$ signal and enable the serial port of the DAC. This microcontroller transfers only eight bits of data during each serial transfer operation; therefore, two consecutive write operations are required. Figure 56 shows the connection diagram.

Figure 56. PIC16C6x/7x-to-AD5450/AD5451/AD5452 Interface

PCB LAYOUT AND POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5450/AD5451/AD5452 is mounted should be designed so that the analog and digital sections are separated and confined to certain areas of the board. If the DAC is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device.

These DACs should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.

Components that produce fast switching signals, such as clocks, should be shielded with a digital ground to avoid radiating noise to other parts of the board, and they should never be run near the reference inputs.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is the best solution, but its use is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground plane, while signal traces are placed on the solder side.

It is good practice to employ compact, minimum lead length PCB layout design. Leads to the input should be as short as possible to minimize IR drops and stray inductance.

The PCB metal traces between $V_{\text {ref }}$ and R_{FB} should also be matched to minimize gain error. To optimize high frequency performance, the I-to-V amplifier should be located as close to the device as possible.

EVALUATION BOARD FOR THE DAC

The evaluation board consists of an AD5450, AD5451 or AD5452 DAC and a current-to-voltage amplifier, such as an AD8065. Included on the evaluation board is a 10 V reference, an ADR01. An external reference can also be applied via an SMB input.

The evaluation kit consists of a CD with PC software to control the DAC. The software allows the user to write code to the device.

POWER SUPPLIES FOR THE EVALUATION BOARD

The board requires $\pm 12 \mathrm{~V}$ and +5 V supplies. The $+12 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {ss }}$ are used to power the output amplifier; the +5 V is used to power the DAC $\left(\mathrm{V}_{\mathrm{DDI}}\right)$ and transceivers $\left(\mathrm{V}_{\mathrm{CC}}\right)$.

Both supplies are decoupled to their respective ground plane with $10 \mu \mathrm{~F}$ tantalum and $0.1 \mu \mathrm{~F}$ ceramic capacitors.

Figure 58. Component-Side Artwork

Figure 59. Silkscreen-Component-Side View (Top)

Figure 60. Solder-Side Artwork

Table 12. Overview of AD54xx \& AD55xx Devices

Part No.	Resolution	No. DACs	INL (LSB)	Interface	Package	Features
AD5424	8	1	± 0.25	Parallel	RU-16, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5426	8	1	± 0.25	Serial	RM-10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5428	8	2	± 0.25	Parallel	RU-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5429	8	2	± 0.25	Serial	RU-10	10 MHz BW, 50 MHz serial
AD5450	8	1	± 0.25	Serial	RJ-8	50 MHz serial interface
AD5432	10	1	± 0.5	Serial	RM-10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5433	10	1	± 0.5	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5439	10	2	± 0.5	Serial	RU-16	10 MHz BW, 50 MHz serial
AD5440	10	2	± 0.5	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{C S}$ pulse width
AD5451	10	1	± 0.25	Serial	RJ-8	50 MHz serial interface
AD5443	12	1	± 1	Serial	RM-10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5444	12	1	± 0.5	Serial	RM-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5415	12	2	± 1	Serial	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 58 \mathrm{MHz}$ serial
AD5445	12	2	± 1	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5447	12	2	± 1	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5449	12	2	± 1	Serial	RU-16	10 MHz BW, 50 MHz serial
AD5452	12	1	± 0.5	Serial	RJ-8, RM-8	50 MHz serial interface
AD5446	14	1	± 1	Serial	RM-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5453	14	1	± 2	Serial	UJ-8, RM-8	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5553	14	1	± 1	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5556	14	1	± 1	Parallel	RU-28	$4 \mathrm{MHz} \mathrm{BW}, 20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width
AD5555	14	2	± 1	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5557	14	2	± 1	Parallel	RU-38	$4 \mathrm{MHz} \mathrm{BW}, 20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width
AD5543	16	1	± 2	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5546	16	1	± 2	Parallel	RU-28	4 MHz BW, $20 \mathrm{n} \overline{\mathrm{WR}}$ pulse width
AD5545	16	2	± 2	Serial	RU-16	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5547	16	2	± 2	Parallel	RU-38	$4 \mathrm{MHz} \mathrm{BW}, 20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width

AD5450/AD5451/AD5452

OUTLINE DIMENSIONS

Figure 61. 8-Lead Small Outline Transistor Package [TSOT] (UJ-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187AA

Figure 62. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Resolution	INL	Temperature Range	Package Description	Branding	Package Option
AD5450YUJ-REEL	8	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1X	UJ-8
AD5450YUJ-REEL7	8	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1X	UJ-8
AD5451YUJ-REEL	10	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1Y	UJ-8
AD5451YUJ-REEL7	10	± 0.25	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1Y	UJ-8
AD5452YUJ-REEL	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1Z	UJ-8
AD5452YUJ-REEL7	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSOT	D1Z	UJ-8
AD5452YRM	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSOP	D1Z	RM-8
AD5452YRM-REEL	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSOP	D1Z	RM-8
AD5452YRM-REEL7	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MSOP	D1Z	RM-8
EVAL-AD5450EB				Evaluation Kit		
EVAL-AD5451EB				Evaluation Kit		
EVAL-AD5452EB				Evaluation Kit		

AD5450/AD5451/AD5452

NOTES

[^0]: ${ }^{1}$ US Patent Number 5,689,257.

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not subject to production test.

