

$2.5 \ \Omega$ CMOS Low Power Dual 2:1 Mux/Demux USB 1.1 Switch

ADG787

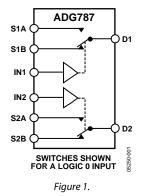
FEATURES

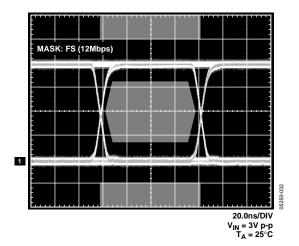
USB 1.1 signal switching compliant -3 dB bandwidth 150 MHz Tiny 10-lead LFCSP, WLCSP, MSOP packages Single-supply 1.8 V to 5.5 V operation Low on resistance 2.5 Ω typ 3.35 max at 85°C Typical power consumption: <0.1 μW

APPLICATIONS

USB 1.1 signal switching circuits Cellular phones PDAs MP3 players Battery-powered systems Headphone switching Audio and video signal routing Communications systems

GENERAL DESCRIPTION


The ADG787 is a low voltage, CMOS device that contains two independently selectable, single-pole, double-throw (SPDT) switches. It is designed as a general analog/digital switch and can also be used for routing USB 1.1 signals.


This device offers low on resistance of typically 2.5 Ω , making the part an attractive solution for applications that require low distortion through the switch.

The ADG787 comes in a tiny 3×4 bump, 1.50 mm \times 2.00 mm WLCSP, a tiny 10-lead LFCSP, and a 10-lead MSOP. These packages make the ADG787 the ideal solution for space-constrained applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG787 exhibits break-before-make switching action.

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.326.8703
 © 2005 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Specifications	3
Absolute Maximum Ratings	5
Truth Table	5
ESD Caution	5
Pin Configurations and Function Descriptions	5

Terminology7
Typical Performance Characteristics
Test Circuits
Outline Dimensions
Ordering Guide15

REVISION HISTORY

1/05—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 4.2 V to 5.5 V, GND = 0 V, unless otherwise noted. $^{\rm 1}$

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
On Resistance (R _{ON})	2.5		Ωtyp	V_{DD} = 4.2 V, V_S = 0 V to V_{DD} , I_S = 10 mA
	2.9	3.35	Ωmax	See Figure 28
On Resistance Match Between Channels (ΔR_{ON})	0.02		Ωtyp	$V_{DD} = 4.2 \text{ V}, \text{ V}_{\text{S}} = 3.5 \text{ V}, \text{ I}_{\text{S}} = 10 \text{ mA}$
		0.1	Ωmax	
On Resistance Flatness (R _{FLAT (ON)})	0.65		Ωtyp	$V_{DD} = 4.2 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{V}_{DD}$
	0.8	0.95	Ωmax	$I_s = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 5.5 V$
Source Off Leakage I _s (OFF)	±0.05		nA typ	$V_{S} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 29}$
Channel On Leakage I _D , I _S (ON)	±0.05		nA typ	$V_s = V_D = 1 V \text{ or } 4.5 V$; see Figure 30
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
Inl or Inh	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
C _{IN} , Digital Input Capacitance	2.5		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{on}	13		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	19	22	ns max	$V_s = 3 V$; See Figure 31
t _{OFF}	3		ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	5	6	ns max	$V_s = 3 V$; See Figure 31
Propagation Delay Skew, t _{skew}	0.06		ns typ	$C_L = 50 \text{ pF}; V_S = 3 \text{ V}$
		0.15	ns max	
Break-Before-Make Time Delay (t _{BBM})	10		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
		5	ns min	$V_{S1} = V_{S2} = 3 V$; See Figure 32
Charge Injection	14		pC typ	$V_D = 1 V$, $R_S = 0 \Omega$, $C_L = 1 nF$; See Figure 33
Off Isolation	-63		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; See Figure 34
Channel-to-Channel Crosstalk	-110		dB typ	S1A to S2A/S1B to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
	-63		dB typ	S1A to S1B/S2A to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 36
Total Harmonic Distortion (THD + N)	0.03		%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_s = 2 V p-p$
Insertion Loss	-0.2		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
–3 dB Bandwidth	145		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
Cs (OFF)	16		pF typ	
C _D , C _s (ON)	40		pF typ	
POWER REQUIREMENTS				$V_{DD} = 5.5 V$
lop	0.005		µA typ	Digital inputs = 0 V or 5.5 V
		1	µA max	

 1 Temperature range for B version: –40°C to +85°C. 2 Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted. 1

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range			V	
On Resistance (R _{ON})	4		Ωtyp	$V_{DD} = 2.7 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{V}_{DD}$
	5.2	5.5	Ωmax	Is = 10 mA; see Figure 28
On Resistance Match Between Channels (ΔR_{ON})	0.07		Ωtyp	$V_{DD} = 2.7 \text{ V}, \text{ V}_{\text{S}} = 1.5 \text{ V}$
	0.3	0.35	Ωmax	$I_s = 10 \text{ mA}$
On Resistance Flatness (R _{FLAT (ON)})	1.6		Ωtyp	$V_{DD} = 2.7 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{V}_{DD}$
	2.2	2.5	Ωmax	$I_s = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.6 V$
Source Off Leakage I _s (OFF)	±0.01		nA typ	$V_{\rm S} = 0.6$ V/3.3 V, $V_{\rm D} = 3.3$ V/0.6 V; see Figure 2
Channel On Leakage I _D , I _S (ON)	±0.01		nA typ	$V_S = V_D = 0.6 \text{ V or } 3.3 \text{ V}$; see Figure 30
DIGITAL INPUTS				
Input High Voltage, VINH		1.3	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	µA max	
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
ton	18		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	30	35	ns max	V _s = 1.5 V; see Figure 31
toff	4		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	6	7	ns max	V _s = 1.5 V; see Figure 31
Propagation Delay Skew, tskew	0.04		ns typ	$C_L = 50 \text{ pF}; V_S = 1.5 \text{ V}$
		0.12	ns max	
Break-Before-Make Time Delay (t _{BBM})	15		ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
		5	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 32
Charge Injection	10		pC typ	$V_D = 1.25 \text{ V}, \text{R}_S = 0 \Omega, \text{C}_L = 1 \text{ nF}; \text{ see Figure 33}$
Off Isolation	-63		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 34
Channel-to-Channel Crosstalk	-110		dB typ	S1A to S2A/S1B to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
	-63		dB typ	S1A to S1B/S2A to S2B; $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Total Harmonic Distortion (THD + N)	0.07		%	$R_L = 32 \Omega$, f = 20 Hz to 20 kHz, V _s = 1.5 V p-p
Insertion Loss	-0.24		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
–3 dB Bandwidth	145		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 35
Cs (OFF)	16		pF typ	
C _D , C _S (ON)	40		pF typ	
POWER REQUIREMENTS				V _{DD} = 3.6 V
lod	0.005		μA typ	Digital Inputs = 0 V or 3.6 V
		1	µA max	

 1 Temperature range for B version: –40°C to +85°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +6 V
Analog Inputs ¹	-0.3 V to V _{DD} + 0.3 V
Digital Inputs	–0.3 V to +6 V or 10 mA, whichever occurs first
Peak Current, S or D	
5 V Operation	300 mA
3.3 V Operation	200 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	
5 V Operation	100 mA
3.3 V Operation	80 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
WLCSP Package (4-Layer Board)	
θ _{JA} Thermal Impedance	120°C/W
LFCSP Package (4-Layer Board)	
θ _{JA} Thermal Impedance	61°C/W
MSOP Package (4-Layer Board)	
θ _{JA} Thermal Impedance	142°C/W
θ_{JC} Thermal Impedance	43.7°C/W
Lead-Free Temperature Soldering	
IR Reflow, Peak Temperature	260°C ± 5°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

TRUTH TABLE

Table 4.

Logic (IN1/IN2)	Switch 1A/2A	Switch 1B/2B
0	Off	On
1	On	Off

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Pin

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

V _{DD} 1 S1A 2 ADG787 D1 3 TOP VIEW (Not to Scale) S1B 5	10 S2A 9 D2 8 IN2 7 S2B 6 GND 500095250
---	---

Figure 3. 10-Lead LFCSP (CP-10)/MSOP (RM-10)

Table 5. 10-Lead LFCSP/MSOP Pin Function Descriptions

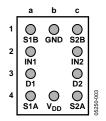


Figure 4. 10-Ball WLCSP (CB-10) Top View (Bumps at the Bottom)

	Table 6. 1	0-Lead WLCS	P Pin Function Descriptions
-	Ball	Mnemonic	Description

No.	Mnemonic	Description	Location		• • • •
1	V _{DD}	Most Positive Power Supply Potential.	1a	S1B	Source Terminal. May be an
2	S1A	Source Terminal. May be an			input or output.
		input or output.	1b	GND	Ground (0 V) Reference.
3	D1	Drain Terminal. May be an	1c	S2B	Source Terminal. May be an
		input or output.			input or output.
4	IN1	Logic Control Input.	2a	IN1	Source Terminal. May be an
5	S1B	Source Terminal. May be an			input or output.
		input or output.	2c	IN2	Logic Control Input.
6	GND	Ground (0 V) Reference.	3a	D1	Drain Terminal. May be an
7	S2B	Source Terminal. May be an			input or output.
		input or output.	3c	D2	Drain Terminal. May be an
8	IN2	Logic Control Input.			input or output.
9	D2	Drain Terminal. May be an	4a	S1A	Logic Control Input.
		input or output.	4b	V _{DD}	Most Positive Power Supply Potential.
10	S2A	Source Terminal. May be an	4c	S2A	Source Terminal. May be an
		input or output.			input or output.

Rev. 0 | Page 6 of 16

TERMINOLOGY

I_{DD} Positive supply current.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{S}\right)$ Analog voltage on terminals D and S.

 $R_{\rm ON}$ Ohmic resistance between D and S.

 $R_{FLAT\ (ON)}$ Flatness is defined as the difference between the maximum and minimum value of on resistance as measured

 ΔR_{ON} On resistance match between any two channels.

Is (OFF) Source leakage current with the switch off.

I_D (OFF) Drain leakage current with the switch off.

I_D, I_s (ON) Channel leakage current with the switch on.

 \mathbf{V}_{INL} Maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ Minimum input voltage for Logic 1.

I_{INL} (I_{INH}) Input current of the digital input.

Cs (OFF) Off switch source capacitance. Measured with reference to ground.

 C_D (OFF) Off switch drain capacitance. Measured with reference to ground.

C_D, C_s (ON) On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

ton

Delay time between the 50% and the 90% points of the digital input and switch on condition.

toff

Delay time between the 50% and the 90% points of the digital input and switch off condition.

t_{BBM}

On or off time measured between the 80% points of both switches when switching from one to another.

Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk A measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

 T_{SKEW} The measure of the variation in propagation delay between each channel.

Rise Time Delay

The rise time of a signal is a measure of the time for the signal to rise from 10% of the ON level to 90% of the ON level. Rise time delay is the difference between the rise time, measured at the input, and the rise time, measured at the output.

Fall Time Delay

The fall time of a signal is a measure of the time for the signal to fall from 90% of the ON level to 10% of the ON level. Fall time delay is the difference between the fall time, measured at the input, and the fall time, measured at the output.

Rise-Time-to-Fall-Time Mismatch

This is the absolute value between the variation in the fall time and the rise time, measured at the output.

TYPICAL PERFORMANCE CHARACTERISTICS

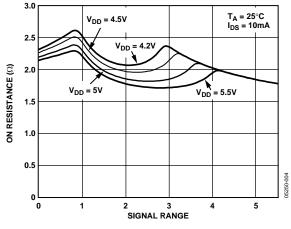


Figure 5. On Resistance vs. V_D (V_s), V_{DD} = 4.2 V to 5.5 V

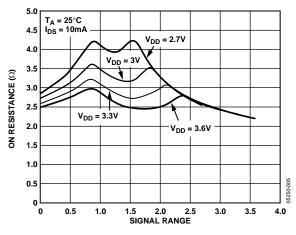


Figure 6. On Resistance vs. V_D (V_s), $V_{DD} = 2.7$ V to 3.6 V

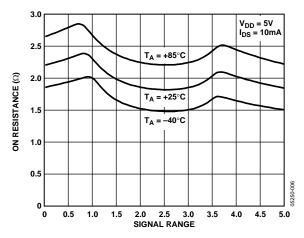


Figure 7. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 5 V$

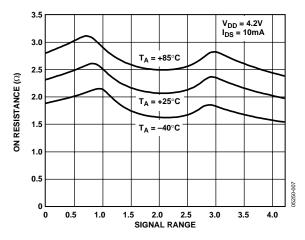


Figure 8. On Resistance vs. V_D (V_S) for Different Temperatures, $V_{DD} = 4.2 V$

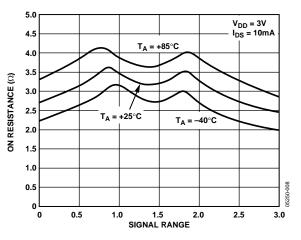
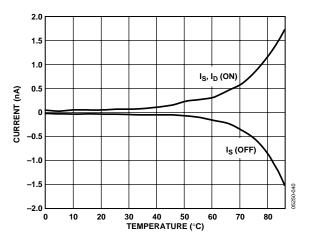
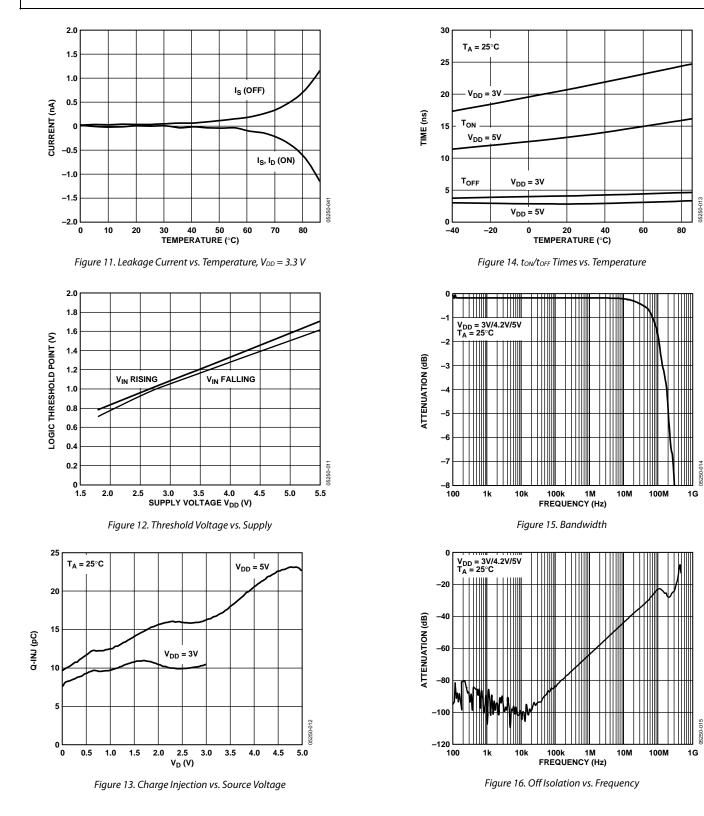
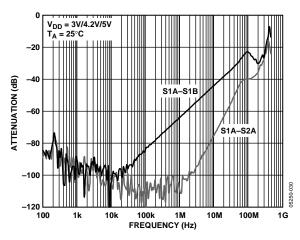
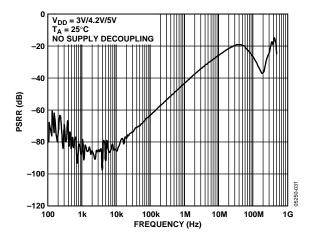
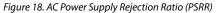
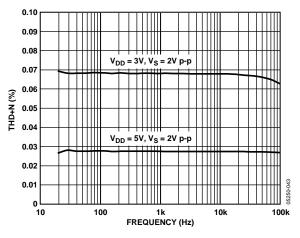


Figure 9. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 3 V$


Figure 10. Leakage Current vs. Temperatures, $V_{DD} = 5.5 V$



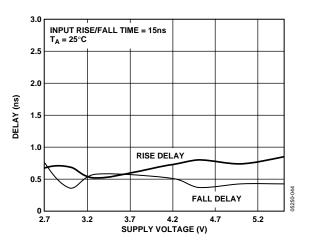
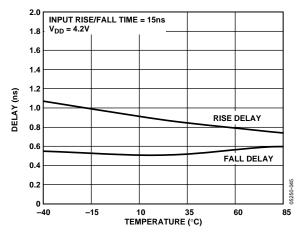



Figure 20. Rise/Fall Time Delay vs. Supply Voltage

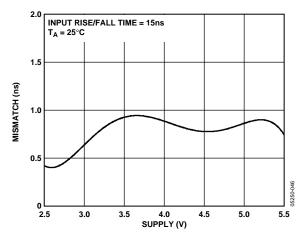


Figure 22. Rise-Time-to-Fall-Time Mismatch vs. Supply Voltage

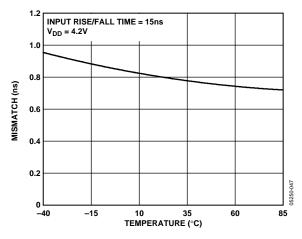


Figure 23. Rise-Time-to-Fall-Time Mismatch vs. Temperature

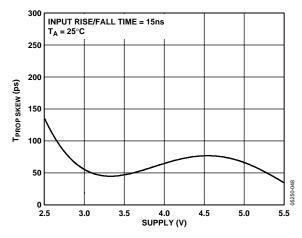


Figure 24. Propagation Delay Skew (tskew) vs. Supply Voltage

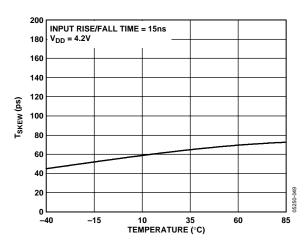


Figure 25. Propagation Delay Skew (t_{SKEW}) vs. Temperature

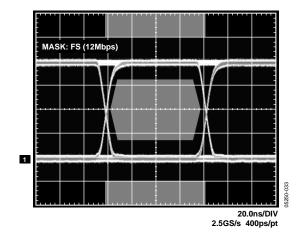


Figure 26. Eye Pattern, 12 Mbps, $V_{DD} = 4.2 V$, $T_A = 85^{\circ}$ C, PRBS 31

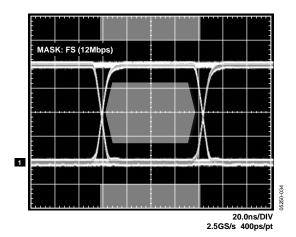
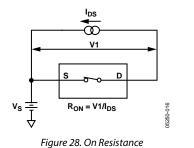
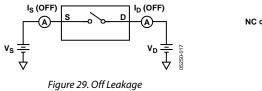
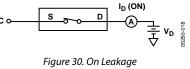
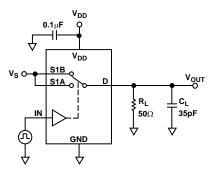





Figure 27. Eye Pattern, 12 Mbps, $V_{DD} = 4.2 V$, $T_A = -40$ °C, PRBS 31

TEST CIRCUITS



VDD 0.1μF Ŷ £ V_{DD} S1B V_S O v_{оит} —о -50% 50% S1A V_{IN} Ą RL 50Ω CL IN -35pF 90% 90% V_{OUT} 4 4 • GND 5250-019 Ą

Figure 31. Switching Times, ton, toff

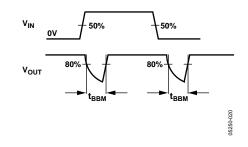


Figure 32. Break-Before-Make Time Delay, t_{BBM}

Figure 33. Charge Injection

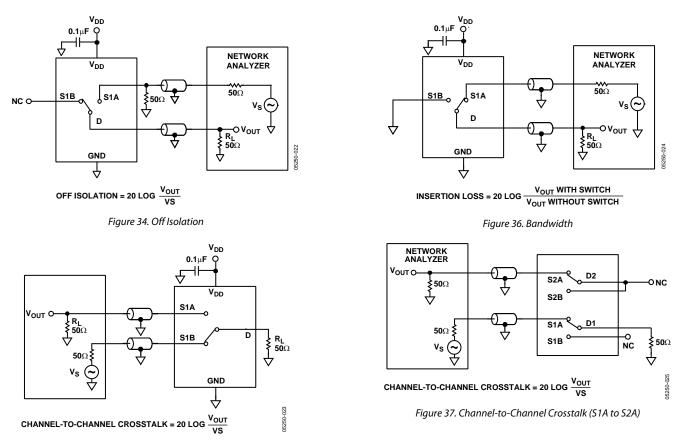
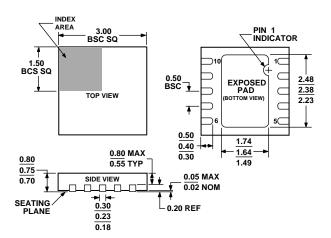
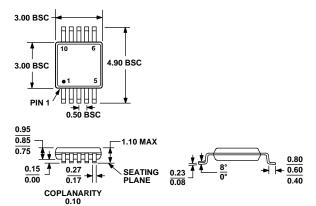




Figure 35. Channel-to-Channel Crosstalk (S1A to S1B)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187BA

Figure 39. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

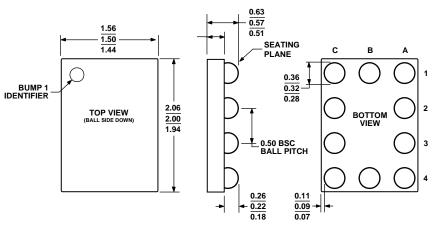


Figure 40. 10-Ball Wafer Level Chip Scale Package [WLCSP] (CB-10) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG787BRMZ ²	-40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S04
ADG787BRMZ-500RL7 ²	–40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S04
ADG787BRMZ-REEL ²	–40°C to +85°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S04
ADG787BCBZ-500RL7 ^{2, 3}	–40°C to +85°C	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCBZ-REEL ^{2,.3}	–40°C to +85°C	10-Ball Wafer Level Chip Scale Package (WLCSP)	CB-10	S04
ADG787BCPZ-500RL7 ²	–40°C to +85°C	10-Lead Lead Frame Chip Scale Package (WD_LFCSP)	CP-10-9	S04
ADG787BCPZ-REEL ²	–40°C to +85°C	10-Lead Lead Frame Chip Scale Package (WD_LFCSP)	CP-10-9	S04

 1 Due to space constraints, branding on this package is limited to three characters. 2 Z = Pb-free part. 3 Contact sales for availability.

NOTES

ANALOG DEVICES

www.analog.com

© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05250-0-1/05(0)

Rev. 0 | Page 16 of 16