Digital Fiber Amplifier

E3X-DA-N

> Truly ultimate fiber amplifier in pursuit of "user friendliness" and "high performance"

* UL-listed including UL991 tests/evaluations Applicable standard: UL3121-1 Standards for additional tests/evaluations for applications: UL991, SEMI S2-0200

Features

Reducing power line wiring meaning space is saved. New design for easier | maintenance. | Industry First | Patent pending |
| :--- | :--- | :--- |

The connector type that uses the wire-saving connector supplies power to the single-conductor slave connectors via the three-conductor master connector. Hence, the following three has been made possible.

1. Wiring is much simpler.
2. Relay connectors are not required meaning that space is used more efficiently and costs are reduced.
3. Simple inventory control because of no differentiation between master and slave in the amplifier section.

Super digital display by use of the Auto Power Control (APC) circuit Industry First
The incident level of LEDs used in sensors is prone to deteriorate with time and as a result, detection becomes unstable.
Using the APC (auto power control) circuit for the first time as the fiber sensor, the E3X-DA-N series has no digital value variations, realizing severe detection.
This makes the E3X-DA-N ideal for applications where a high degree of sensitivity is required, such as detecting crystal glass.

Conventional Digital Fiber Amplifiers	Inciden 3000 Threshold	
E3X-DA-N Series	3000 Threshold	

Power consumption reduced by 70%.

The digital display can be changed to fullOFF or Dark-ON during RUN.
 Power consumption can be reduced by setting the display to Full-OFF/Dark-ON in applications where the digital display is rarely looked at during RUN.
 (Can be set at the Mobile Console only)

Beeper-sized, new-generation Mobile Console unleashing the power of the ultimate fiber amplifier
Remote setting/adjustment function
Simultaneous turning possible using group teaching.

Differences in incident light avoided by group zero-reset.

[^0]Sensor head flashing during Amplifier operation
Alternatively, the amplifier channel can be displayed.

Amplifier units
Prewired

Ite	Shape	Control output		Model				
Ite					PN output	PNP output		
Standard models		ON/OF	output	E3X	DA11-N	E3X-DA41-N		
Monitor-output md		- ON/OFF output -Monitor output		E3X-DA21-N		E3X-DA51-N		
Mark-detecting m		ON/OFF output		E3X	AB11-N	E3X-DAB41-N		
Mark-detecting mb				E3X	DAG11-N	E3X-DAG41-N		
Infrared models				E3X	DAH11-N	E3X-DAH41-N		
Differential output				E3X-DA11D		---		
Water-resistant m				E3X-DA11V		E3X-DA41V		
Twin-output mode				E3X-DA11TW		E3X-DA41TW		
Connector type								
Item	Applicable Connector (order separately)		Control output		Model			
			NPN output	PNP output				
Standard models	Master	E3X-CN11			ON/OFF output		E3X-DA6	E3X-DA8
	Slave	E3X-CN12						
Monitor-output	Master	E3X-CN21	-ON/OFF output -Monitor-output		E3X-DA7	E3X-DA9		
	Slave	E3X-CN22						
Mark-detecting mo	Master	E3X-CN11	ON/OFF output		E3X-DAB6	E3X-DAB8		
(Blue LED)	Slave	E3X-CN12						
Mark-detecting mod	Master	E3X-CN11			E3X-DAG6	E3X-DAG8		
(Green LED)	Slave	E3X-CN12						
Infrared models	Master	E3X-CN11			E3X-DAH6	E3X-DAH8		
	Slave	E3X-CN12						
Differential output type	Master	E3X-CN11						
	Slave	E3X-CN12			E3X-DA6D			
Water-resistant models (M8 Connector)	$\begin{aligned} & \text { XS3F-M421-40■-A } \\ & \text { XS3F-M422-40■-A } \end{aligned}$				E3X-DA14V	E3X-DA44V		
Twin-output models	Master	E3X-CN21						
	Slave	E3X-CN22						

Amplifier units Connectors (Order Separately) Note: Stickers for Connectors are included as accessories.

Item	Shape	Cable length	No. of conductors	Model
Master connector		2 m	3	E3X-CN11
			4	E3X-CN21
Slave connector			1	E3X-CN12
			2	E3X-CN22

Sensor I/O Connectors (Order separately)

Size	Cable type		ape		le length	Model
M8	Standard cable	Straight connector		2 m	4 conductors	XS3F-M421-402-A
				5 m		XS3F-M421-405-A
		L-shaped connector		2 m		XS3F-M422-402-A
				5 m		XS3F-M422-405-A

Mobile Console (Order Separately)

Shape	Model	Remarks
	(Set form)	Mobile Console with head, cable,
and AC adapter provided as ac-		

Rating/Performance

Amplifier units

Prewired

Model		Type	Standard models	Monitor-output models	Mark-detecting models		Infrared models	Water-resistant models	Twin-output models
		NPN output	E3X-DA11-N	E3X-DA21-N	E3X-DAB11-N	E3X-DAG11-N	E3X-DAH11-N	E3X-DA11V	E3X-DA11TW
		PNP output	E3X-DA41-N	E3X-DA51-N	E3X-DAB41-N	E3X-DAG41-N	E3X-DAH41-N	E3X-DA41V	E3X-DA41TW
Insulation resistance			$20 \mathrm{M} \mathrm{min}$.						
Dielectric strength			1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute						
Vibration resistance			10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude for 2 hours each in X, Y, and Z directions						
Shock resistance			Destruction: $500 \mathrm{~m} / \mathrm{s} 2$ for 3 times each in X, Y, and Z directions						
Protective structure			IEC 60529 IP50 (with Protective Cover attached)					IEC 60529 IP66 (with protective cover attached)	IEC 60529 IP50 (with protective cover attached)
Connection method			Prewired models (standard length: 2 m)						
Weight (Packed state)			Approx. 100 g					Approx. 110 g	Approx. 100 g
Material	Case		PBT (polybutylene terephthalate)						
	Cover		Polycarbonate						Polyethersulfone
Accessories			Instruction manual						

Connector type

Specifications that differ from those of the prewired type

	Type	Standard models	Monitor-output models	Mark-det	g models	Infrared models	Water-resistant models (See note.)	Twin-output models
Model	NPN output	E3X-DA6	E3X-DA7	E3X-DAB6	E3X-DAG6	E3X-DAH6	E3X-DA14V	E3X-DA6TW
Item	PNP output	E3X-DA8	E3X-DA9	E3X-DAB8	E3X-DAG8	E3X-DAH8	E3X-DA44V	E3X-DA8TW
Connection method		Connector type					M8 connector	Connector
Weight (Packed state)		Approx. 55 g					65 g	Approx. 55 g

* For waterproof type only, voltage resistance is 500 VAC $50 / 60 \mathrm{~Hz} 1$ min

Amplifier unit Connectors

Item \quad Model	E3X-CN11/21/22	E3X-CN12
Rated current	2.5 A	
Rated voltage	50 V	
Contact resistance	20 m max. (20 mVDC max., 100 mA max.) [By connection with amplifier unit and connection with adjacent connector (except conductor resistance of cable)]	
No. of insertions	50 times (By connection with amplifier unit and connection with ad- jacent connector)	
Material		Housing
	PBT (polybutylene terephthalate)	
Weight (Packed state)	Approx. 55 g	Approx. 25 g

Mobile Console

Item Model	E3X-MC11
Supply volt- age	Charged with AC adapter
Connection method	Connected via adapter
Weight (packed state)	Approx. 580 g (Console only: 120 g)

For details of the Mobile Console, refer to the instruction manual attached to the product.

Digital Fiber Amplifier

* Differential output digital fiber amplifier (E3X-DA11D/E3X-DA6D)

Applicable fiber unit characteristic
(Through-beam model)

Fiber type	Sensing distance (mm) (Values in parentheses: When using the E39-F1 lens unit)						Standard object $(\mathrm{mm})^{\star 1}$ Minimum sensing object *2 (Opaque object) default
	HIGH			LOW			
	1	2	3-11	1	2	3-11	
	$\begin{aligned} & 270 \text { or } \\ & 570 \mathrm{~s} \end{aligned}$	0.5 or 1 ms	$\begin{aligned} & 1 \text { to } 200 \mathrm{~ms} \text { or } 2 \\ & \text { to } 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 270 \text { or } \\ & 570 \mathrm{~s} \end{aligned}$	0.5 or 1 ms	$\begin{aligned} & 1 \text { to } 200 \mathrm{~ms} \text { or } 2 \\ & \text { to } 400 \mathrm{~ms} \end{aligned}$	
E32-ET11R	240 (1680)	280 (1960)	370 (2590)	140(980)	180(1260)	240 (1680)	1 mm dia. (0.01
E32-ET21R	50	60	80	30	40	50	mm dia.)
E32-T16WR	580	690	910	350	450	580	(0.3 mm dia.)*3
E32-T16PR	380	450	600	230	290	380	(0.2 mm dia.)

*1. The sensing object is operating.
*2. Value applied when the response time is set to $3-11$. The value can be detected if the temperature varies within the operating ambient temperature. (Value when the sensing object is operating)
*3. The digital value is 1000 and the value can be detected in each detection area.
Refer to the E3X-DA-N for the note of the fiber unit.

(Reflective model)

11 step Fiber type	Sensing distance (mm)*1						Standard object (mm) *2 Minimum sensing object *3 (Opaque object) default
	HIGH			LOW			
	1	2	3-11	1	2	3-11	
	$\begin{aligned} & 270 \text { or } \\ & 570 \mathrm{~s} \end{aligned}$	0.5 or 1 ms	$\begin{aligned} & 1 \text { to } 200 \mathrm{~ms} \text { or } 2 \\ & \text { to } 400 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 270 \text { or } \\ & 570 \mathrm{~s} \end{aligned}$	0.5 or 1 ms	$\begin{aligned} & 1 \text { to } 200 \mathrm{~ms} \text { or } 2 \\ & \text { to } 400 \mathrm{~ms} \end{aligned}$	
E32-ED11R	80	90	120	45	60	80	$\begin{aligned} & 150 \times 150(0.01 \\ & \mathrm{mm} \text { dia.) } \end{aligned}$
E32-ED21R	13	15	20	7	10	13	$\begin{aligned} & 25 \times 25(0.01 \mathrm{~mm} \\ & \text { dia.) } \end{aligned}$

*1. Sensing distance indicates values for white paper.
*2. The sensing object is operating.
*3. Value applied when the response time is set to $3-11$. The value can be detected if the temperature varies within the operating ambient temperature. (Value when the sensing object is operating)
Note: Refer to E3X-DA-N for the note of the fiber unit.

Differences from E3X-DA-N amplifier unit

For the outline drawings and other details, refer to the instruction manuals attached to the products.

NPN output

\begin{tabular}{|c|c|c|c|c|}
\hline Model \& Output transistor Status \& Timing chart \& Mode selection switch \& Output circuit \\
\hline \begin{tabular}{l}
E3X-DA11-N \\
E3X-DAB11-N \\
E3X-DAG11-N \\
E3X-DAH11-N \\
E3X-DA11V \\
E3X-DA6 \\
E3X-DAB6 \\
E3X-DAG6 \\
E3X-DAH6 \\
E3X-DA14V
\end{tabular} \& Light ON

Dark ON \& \& \begin{tabular}{l}
L ON (LIGHT ON)

D ON (DARK ON)

 \&

Connector Pin Arrangement

Note: Pin 2 is not used.
\end{tabular}

\hline $$
\begin{aligned}
& \text { E3X-DA21-N } \\
& \text { E3X-DA7 }
\end{aligned}
$$ \& Light ON

Dark ON \& \& | L ON (LIGHT ON) |
| :--- |
| D ON (DARK ON) | \& Note: Load resistance: $10 \Omega \mathrm{~min}$.

\hline $$
\begin{aligned}
& \text { E3X-DA11TW } \\
& \text { E3X-DA6TW }
\end{aligned}
$$ \& Light ON

Dark ON \& (Between brown and black) \& | L ON (LIGHT ON) |
| :--- |
| D ON (DARK ON) | \&

\hline
\end{tabular}

Note: With E3X-DA \square TW models, only channel 1 is output when set for area sensing operation.
L ON The range between the CH 1 and CH 2 thresholds turns ON
D ON The range between the CH 1 and CH 2 thresholds turns OFF (CH2 is always OFF)

PNP output

Model	Output transistor Status	Timing chart	Mode selection switch	Output circuit
E3X-DA41-N E3X-DAB41-N E3X-DAG41-N E3X-DAH41-N E3X-DA41V E3X-DA8 E3X-DAB8 E3X-DAG8 E3X-DAH8 E3X-DA44V	Light ON Dark ON		L ON (LIGHT ON) D ON (DARK ON)	Connector Pin Arrangement Note: Pin 2 is not used.
$\begin{aligned} & \text { E3X-DA51-N } \\ & \text { E3X-DA9 } \end{aligned}$	Light ON Dark ON	(Between blue and black)	L ON (LIGHT ON) D ON (DARK ON)	Note: Load resistance: $10 \mathrm{k} \Omega \mathrm{min}$.
$\begin{aligned} & \text { E3X-DA41TW } \\ & \text { E3X-DA8TW } \end{aligned}$	Light ON Dark ON		L ON (LIGHT ON) D ON (DARK ON)	

Note: With E3X-DA \square TW models, only channel 1 is output when set for area sensing operation. ON The range between the CH 1 and CH 2 thresholds turns ON
D ON The range between the CH 1 and CH 2 thresholds turns OFF (CH2 is always OFF)
Connectors (Sensor I/O Connectors)

Characteristic data (default)

Hysteresis vs. sensing distance
Reflective model
E32-D11L

Monitor output vs. distance
(In standard mode)
Through-beam
E32-TC200

Repeated accuracy vs. sensing distance
Reflective model
E32-DC200

Reflective model
E32-DC200

Connection

Connection with linear sensor controller K3NX-VD2 \square

* Use this service power supply for the Sensor with reference to the power consumption of each Sensor.
Note: 1. Various I/O Units are available for the K3NX. Select an appropriate output type depending on the application.

2. For details about the K3NX, refer to the K3NX Datasheet (N084) or the K3NX Operation Manual (N90).
3. This wiring is for the K3NX, with DC power supply specifications and the Monitor (Analog) Sensor with DC power supply specifications. Check respective power supply specifications before wiring them.

Nomenclature:

amplifier units

Standard, monitor-output, mark-detecting, infrared, and water-resistant models

Lock Button	Level Display	Setting Buttons
		TEACH 0
		MODE O

Twin-output models

Operation Indicator (orange)
ON when output is ON
OFF when output is OFF. Mode Selector
Operation Mode Selecto
Use to switch between Use to switch between
Use to select SET,
ADJ, or RUN mode.

General

Manual Tuning (Fine Sensitivity Adjustment) in ADJ Mode Perform fine sensitivity adjustment after teaching and manual tuning (without using the teaching function) in the way shown below:

The items displayed in ADJ mode vary with the display setting in RUN mode.

RUN mode			
Digital incident level			
Digital percent			
Analog value	\longrightarrow		ADJ mode
:---		Digital threshold	
:---			
Digital Percent			
Analog value			

2 Zero-reset (RUN Mode)

3 Initial Reset (SET Mode)


```
ed (SET mode)
reafter. When a teaching error occurs, the level indicators
| selection switch.cH1\squareCH2
o-point With/Without-object Teaching
```

-point teaching (for positioning)

Precautions

Correct Use

Amplifier units

Design

Power ON
The sensor is ready to sense an object within 200 ms after turning the power ON. If the load and sensor are connected to different power supplies, always turn on the sensor power first.

Mounting

Connection/removing of amplifier units
(Connection)

1. Install the units one by one to the DIN rail.

2. Slide one unit toward the other, match the clips at the front ends, and then bring them together until they "click".

Slide one unit avxay from the other and remove them one by one. (Do not remove the connected units together from the DIN rail.)

Note:1.When the amplifier units are connected to each Sther, the operable ambient temperature changes depending on the number of connected amplifier units. Check "Ratings/Rer-

Adjustment

Mutual interference prevention function
The digital display value may vary due to the light from the other sensor. In that case, low the sensitivity (raise the threshold) to stabilize detection.

EEPROM Write Error

If a write error occurs (operation indicator starts flashing) due to power-off, static electricity or other noise in the teaching mode, perform teaching again.

Optical communication

When connecting the amplifier units, assemble them in close contact. During operation, do not slide or dismantle the amplifier units.

Hysteresis adjustment

The Mobile Console allows hysteresis adjustment, but note that the unit may not operate properly if the hysteresis setting is lower than the factory value.

Use of Mobile Console

For the twin output type (E3X-DA \square TW), up to 16 channels (eight E3X-DA $\square \square$ TW units) can be set from the Mobile Console E3X-MC11. (Note that the operation mode and area detection cannot be set.)

Amplifier Unit Connectors

Installation

Connector installation

1. Insert the Master or Slave Connector into the amplifier unit until it clicks into place.

2. Link amplifier units to each other after the master and slave Connectors have been inserted.
3. Apply the supplied seal to the non-connecting surface of the master/slave connector.

Note: Apply seal to the grooved side.

Removing Connectors

1. Slide the slave amplifier unit (s) on which the connector must be removed from the rest of the group.
2. After the amplifier unit (s) has been separated, press down the lever on the connector and remove it. (Do not attempt to remove connectors without separating them from other amplifier units first.)

Mounting End Plate (PFP-M)
Depending on the installation, an amplifier unit may move during operation. In this case, use an end plate.
Before installing an end plate, remove the clip from the master amplifier unit using a nipper or similar tool.

The sensor bottom is also equipped with a clip removing mechanism.

1. Insert the clip to be removed into the slit underneath the clip on another amplifier unit.

2. Remove the clip by rotating the amplifier unit.

When fitting the Mobile Console, set the end plate in the guide as shown in the following figure.

Tensile stress for connectors (including cables) E3X-CN11, E3X-CN21, E3X-CN22: 30 N max. E3X-CN12: 12N max.

Dimensions (Unit: mm)

Amplifier Units

prewired
E3X-DA11-N E3X-DAG11-N E3X-DA21-N
E3X-DAH11-N E3X-DAB11-N E3X-DAB41-N
E3X-DA41-N E3X-DAG41-N E3X-DA51-N
E3X-DAH41-N E3X-DA11D

Amplifier units with Cables, Water-resistant Models

E3X-DA11V
E3X-DA41V

*. The mounting Bracket can also be used on side A.

* 2. 4-dia., 3-conductor, vinyl-insulated round cable (conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm is used.

Amplifier Unit Connectors

Master connector
E3X-CN11
E3X-CN21

* E3X-CN11: A 4-dia., 3-conductor, vinyl-insulated round cable
(conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm) is used.
E3X-CN21: A 4-dia., 4-conductor, vinyl-insulated round cable
(conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm) is used.

E3X-CN22

* E3X-CN12: A 2.6-dia., single-conductor, vinyl-insulated round cable
(conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm) is used.
E3X-CN22: A 4-dia., 2-conductor, vinyl-insulated round cable
(conductor cross-sectional area: $0.2 \mathrm{~mm}^{2}$; insulation diameter: 1.1 mm) is used.

Mobile Console

[^1]To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. E22E-EN-Cat04-01 In the interest of product improvement, specifications are subject to change without notice.

[^0]: Incident level and threshold can be displayed simultaneously.

[^1]: ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

