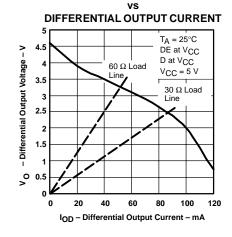


SLLS533B - MAY 2002 - REVISED MAY 2003

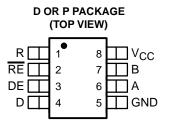
HIGH OUTPUT RS-485 TRANSCEIVERS

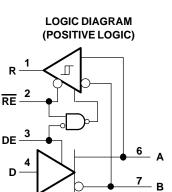

FEATURES

- Minimum Differential Output Voltage of 2.5 V Into a 54-Ω Load
- Open-Circuit, Short-Circuit, and Idle-Bus Failsafe Receiver
- 1/8th Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- Driver Output Slew Rate Control Options
- Electrically Compatible With ANSI TIA/EIA-485-A Standard
- Low-Current Standby Mode . . . 1 μA Typical
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications
- Pin Compatible With Industry Standard SN75176

APPLICATIONS

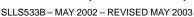
- Data Transmission Over Long or Lossy Lines or Electrically Noisy Environments
- Profibus Line Interface
- Industrial Process Control Networks
- Point-of-Sale (POS) Networks
- Electric Utility Metering
- Building Automation
- Digital Motor Control


DIFFERENTIAL OUTPUT VOLTAGE



DESCRIPTION

The SN65HVD05, SN75HVD05, SN65HVD06, SN75HVD06, SN65HVD07, and SN75HVD07 combine a 3-state differential line driver and differential line receiver. They are designed for balanced data interoperate ANSI transmission and with TIA/EIA-485-A and ISO 8482E standard-compliant devices. The driver is designed to provide a differential output voltage greater than that required by these standards for increased noise margin. The drivers and receivers have active-high and active-low enables respectively, which can be externally connected together to function as direction control.


The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or not powered. These devices feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ÆÀ

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

							(ED AS
SIGNALING RATE	UNIT LOAD	DRIVER OUTPUT SLOPE CONTROL	Τ _Α	PART NUMBER ⁽²⁾		PLASTIC DUAL-IN-LINE PACKAGE (PDIP)	SMALL OUTLINE IC (SOIC) PACKAGE
40 Mbps	1/2	No		SN65HVD05D	SN65HVD05P	65HVD05	VP05
10 Mbps	1/8	Yes	–40°C to 85°C	SN65HVD06D	SN65HVD06P	65HVD06	VP06
1 Mbps	1/8	Yes		SN65HVD07D	SN65HVD07P	65HVD07	VP07
40 Mbps	1/2	No		SN75HVD05D	SN75HVD05P	75HVD05	VN05
10 Mbps	1/8	Yes	–0°C to 70°C	SN75HVD06D	SN75HVD06P	75HVD06	VN06
1 Mbps	1/8	Yes		SN75HVD07D	SN75HVD07P	75HVD07	VN07

(1) For the most current specification and package information, refer to our web site at www.ti.com.

(2) The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD05DR).

PACKAGE DISSIPATION RATINGS (SEE FIGURE 12 AND FIGURE 13)

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D(2)	710 mW	5.7 mW/°C	455 mW	369 mW
D(3)	1282 mW	10.3 mW/°C	821 mW	667 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3

(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1) (2)

			SN65HVD05, SN65HVD06, SN65HVD07 SN75HVD05, SN75HVD06, SN75HVD07
Supply voltage range, VC	С		-0.3 V to 6 V
Voltage range at A or B			-9 V to 14 V
Input voltage range at D,	DE, R or RE		-0.5 V to V _{CC} + 0.5 V
Voltage input range, transie	ent pulse, A and B, through 100	Ω (see Figure 11)	-50 V to 50 V
	(3)	A, B, and GND	16 kV
Electrostatic discharge	Human body model ⁽³⁾	All pins	4 kV
	Charged-devicemodel(4)	All pins	1 kV
Continuous total power dis	ssipation	•	See Dissipation Rating Table
Storage temperature rang	je, T _{stg}		–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.

(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	;	5.5	V
Voltage at any bus terminal (separately or common mode) V _I or V _{IC}		_7(1)		12	V
High-level input voltage, VIH	D, DE, RE	2			V
Low-level input voltage, VIL	D, DE, RE			0.8	V
Differential input voltage, VID (see Figure 7)		-12		12	V
119-b local subset summer 1	Driver	-100)		
High-level output current, IOH	Receiver	-8			mA
	Driver			100	
Low-level output current, IOL	Receiver			8	mA
	SN65HVD05				
	SN65HVD06	-40)	85	°C
	SN65HVD07				
Operating free-air temperature, T _A	SN75HVD05				
	SN75HVD06	(I	70	°C
	SN75HVD07				

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted (1)

PARAMETER		TEST CON	TEST CONDITIONS		ТҮР(1)	MAX	UNIT			
VIK	Input clamp voltage		lj = -18 mA		-1.5			V		
		No Load				VCC				
Vod	Differential output voltage		$R_L = 54 \Omega$, See Figure 1		2.5			V		
-			$V_{\text{test}} = -7 \text{ V to } 12 \text{ V}, \text{ See}$	Figure 2	2.2					
$\Delta V_{OD} $	Change in magnitude of dif output voltage	fferential	See Figure 1 and Figure 2		-0.2		0.2	V		
V _{OC(SS)}	Steady-state common-moo voltage	deoutput			2.2		3.3	V		
$\Delta V_{OC}(SS)$	Change in steady-state common-mode output volta	age	See Figure 3		See Figure 3		-0.1		0.1	V
		HVD05				600				
VOC(PP) Peak-to-peak common- mode output voltage	HVD06	See Figure 3			500		mV			
()	mode output voltage	HVD07				900				
IOZ	High-impedance output cu	rrent	See receiver input current	s						
	land a summand	D			-100		0			
łį	Input current	DE			0		100	μA		
los	Short-circuit output current		$-7 V \le V_0 \le 12 V$		-250		250	mA		
C _(diff)	Differential output capacita	nce	$V_{ID} = 0.4 \sin(4E6\pi t) + 0.5$	5 V, DE at 0 V		16		pF		
			RE at V _{CC} , D & DE at V _{CC} , No load	Receiver disabled and driver enabled		9	15	mA		
ICC	Supply current		$\overline{\text{RE}}$ at V _{CC} , D at V _{CC} DE at 0 V, No load	Receiver disabled and driver disabled (standby)		1	5	μA		
			RE at 0 V, D & DE at V _{CC} , No load	Receiver enabled and driver enabled		9	15	mA		

(1) All typical values are at 25°C and with a 5-V supply.

SLLS533B - MAY 2002 - REVISED MAY 2003

DRIVER SWITCHING CHARACTERISTICS NIL

over operating free-air temperature range unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	ТҮР(1)	МАХ	UNIT	
		HVD05			6.5	11		
^t PLH	Propagation delay time, low-to-high-level output	HVD06			27	40	ns	
		HVD07			250	400		
		HVD05			6.5	11		
^t PHL	Propagation delay time, high-to-low-level output	HVD06			27	40	ns	
		HVD07			250	400		
		HVD05	Rι = 54 Ω,	2.7	3.6	6		
tr	Differential output signal rise time	HVD06	$C_{L} = 50 \text{pF},$	18	28	55	ns	
		HVD07	See Figure 4	150	300	450		
		HVD05		2.7	3.6	6		
t _f	Differential output signal fall time	HVD06		18	28	55	ns	
		HVD07		150	300	450		
		HVD05				2		
^t sk(p)	Pulse skew (tpHL - tpLH)	HVD06	-			2.5	ns	
		HVD07				10		
	sk(pp)(2) Part-to-part skew	HVD05	_			3.5	ns	
t _{sk(pp)} (2)		HVD06				14		
- (17)		HVD07				100		
		HVD05				25		
^t PZH1	Propagation delay time, high-impedance-to-high-level output	HVD06				45	ns	
		HVD07	RE at 0 V,			250		
		HVD05	$R_{\rm L} = 110 \Omega,$ $D_{\rm S}$ See Figure 5			25		
^t PHZ	Propagation delay time, high-level-to-high-impedance output	HVD06				60	ns	
		HVD07				250		
		HVD05				15		
^t PZL1	Propagation delay time, high-impedance-to-low-level output	HVD06	- 			45	ns	
		HVD07	RE at 0 V,		200			
		HVD05	$R_L = 110 \Omega$, See Figure 6			14		
^t PLZ	Propagation delay time, low-level-to-high-impedance output	HVD06	0001 .gui 0 0		90		ns	
		HVD07				550		
^t PZH2	Propagation delay time, standby-to-high-level output		$\frac{R_{L}}{RE} = 110 \Omega,$ RE at 3 V, See Figure 5			6	μs	
^t PZL2	Propagation delay time, standby-to-low-level output		$\frac{R_{L}}{RE} = 110 \Omega,$ RE at 3 V, See Figure 6			6	μs	

XAS TRUMENTS

www.ti.com

(1) All typical values are at 25°C and with a 5-V supply.
 (2) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

SLLS533B - MAY 2002 - REVISED MAY 2003

RECEIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER			TEST CONDITIONS		MIN	ТҮР(1)	MAX	UNIT		
V _{IT+}	Positive-going input th voltage	reshold	I _O = -8 mA					-0.01	V		
V _{IT-}	Negative-going input t voltage	hreshold	I _O = 8 mA			-0.2			V		
V _{hys}	Hysteresis voltage (V	IT+-VIT_)					35		mV		
VIK	Enable-input clamp vo	oltage	l _l = –18 mA			-1.5			V		
Vон	High-level output volta	age	V _{ID} = 200 mV,	I _{OH} = -8 mA,	See Figure 7	4			V		
VOL	Low-level output volta	ge	$V_{ID} = -200 \text{ mV},$	I _{OL} = 8 mA,	See Figure 7			0.4	V		
IOZ	High-impedance-state current	e output	$V_{O} = 0 \text{ or } V_{CC}$	RE at V _{CC}		-1		1	μA		
				$V_A \text{ or } V_B = 12 \text{ V}$			0.23	0.5			
	H Bus input current		Other input at 0 V	$V_A \text{ or } V_B = 12 \text{ V},$	ACC = 0 A		0.3	0.5	mA		
11 1		HVD05		$V_A \text{ or } V_B = -7 \text{ V}$		-0.4	-0.13				
				$V_A \text{ or } V_B = -7 \text{ V},$	VCC = 0 V	-0.4	-0.15				
			Other input at 0 V	$V_A \text{ or } V_B = 12 \text{ V}$			0.06	0.1			
		HVD06,			Other input	$V_A \text{ or } V_B = 12 \text{ V},$	Λ CC = 0 Λ		0.08	0.13	1
		HVD07			$V_A \text{ or } V_B = -7 \text{ V}$		-0.1	-0.05		mA	
				$V_A \text{ or } V_B = -7 \text{ V},$	Λ CC = 0 Λ	-0.05	-0.03				
Iн	High-level input curre	nt, RE	VIH = 2 V			-60	-26.4		μA		
۱ _{IL}	Low-level input currer	nt, RE	V _{IL} = 0.8 V			-60	-27.4		μA		
C _(diff)	Differential input capa	citance	V _I = 0.4 sin (4E6	πt) + 0.5 V, DE at 0	V		16		pF		
			RE at 0 V, D & DE at 0 V, No load	Receiver enabled a	nd driver disabled		5	10	mA		
ICC	Supply current	Supply current	RE at V _{CC} , DE at 0 V, D at V _{CC} , No load	Receiver disabled a (standby)	nd driver disabled		1	5	μA		
	-		RE at 0 V, D & DE at V _{CC} , No load	Receiver enabled a	nd driver enabled		9	15	mA		

(1) All typical values are at 25°C and with a 5-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN T	гүр(1)	MAX	UNIT	
^t PLH	Propagation delay time, low-to-high-level output 1/2 UL	HVD05			14.6	25	ns	
^t PHL	Propagation delay time, high-to-low-level output 1/2 UL	HVD05			14.6	25	ns	
	Dran a mation de la criteria de un tachier de la calendaria (01)	HVD06			55	70		
^t PLH	Propagation delay time, low-to-high-level output 1/8 UL	HVD07	$V_{ID} = -1.5 V$ to 1.5 V,		55	70	ns	
	Development of the state of the	HVD06	CL = 15 pF,		55	70		
^t PHL	Propagation delay time, high-to-low-level output 1/8 UL	HVD07	See Figure 8		55	70	ns	
		HVD05				2		
^t sk(p)	(p) Pulse skew (tpHL - tpLH)	HVD06				4.5	ns	
- (1)		HVD07				4.5		
		HVD05				6.5		
^t sk(pp) ⁽²⁾	Part-to-part skew	Part-to-part skew	HVD06				14	ns
		HVD07				14		
t _r	Output signal rise time		C _I = 15 pF,		2	3		
tf	Output signal fall time		See Figure 8		2	3	ns	
^t PZH1	Output enable time to high level					10		
^t PZL1	Output enable time to low level		$C_L = 15 \text{pF},$			10		
^t PHZ	Output disable time from high level Output disable time from low level		DE at 3 V, See Figure 9			15	ns	
^t PLZ						15		
^t PZH2	Propagation delay time, standby-to-high-level output		$C_{L} = 15 \text{pF}, DE \text{ at } 0,$			6		
^t PZL2	Propagation delay time, standby-to-low-level output		See Figure 10			6	μs	

(1) All typical values are at 25°C and with a 5-V supply.

(2) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

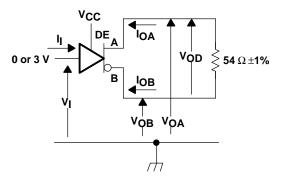
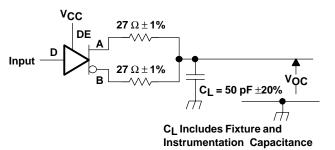



Figure 1. Driver V_{OD} Test Circuit and Voltage and Current Definitions

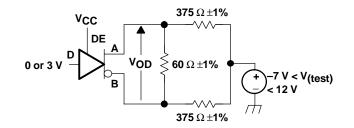
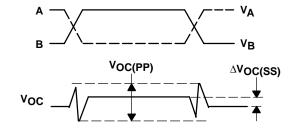
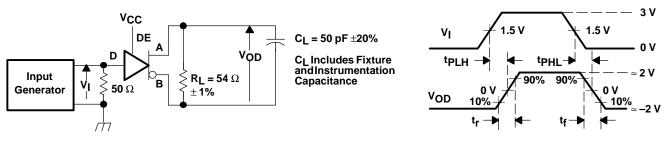




Figure 2. Driver V_{OD} With Common-Mode Loading Test Circuit

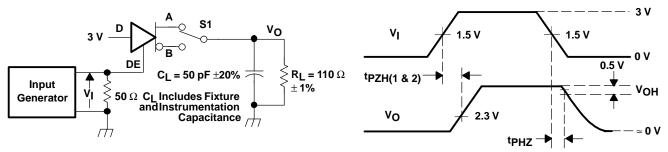
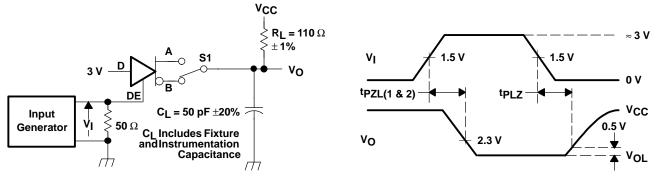

Input: PRR = 500 kHz, 50% Duty Cycle,tr<6ns, tr<6ns, ZO = 50 Ω

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_0 = 50 Ω

Figure 4. Driver Switching Test Circuit and Voltage Waveforms



Generator: PRR = 100 kHz, 50% Duty Cycle, tr <6 ns, tf <6 ns, Z_0 = 50 Ω

Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

SLLS533B - MAY 2002 - REVISED MAY 2003

Generator: PRR = 100 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z₀ = 50 Ω

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms



Figure 7. Receiver Voltage and Current Definitions

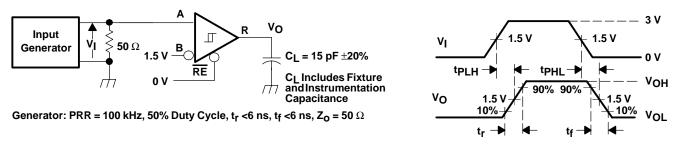
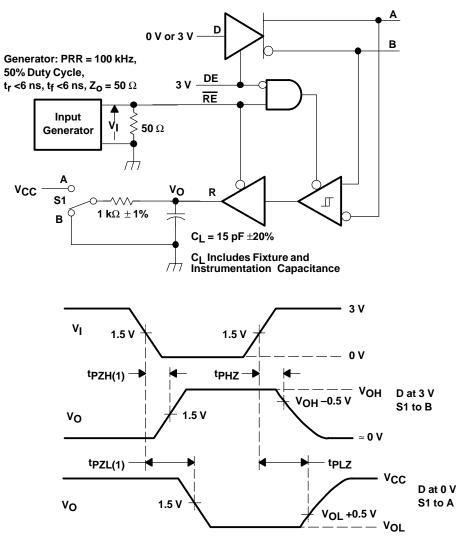
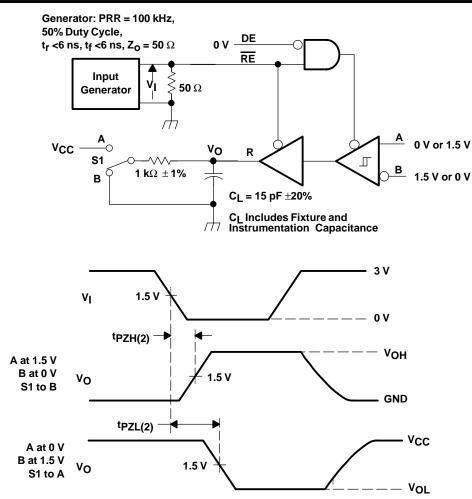
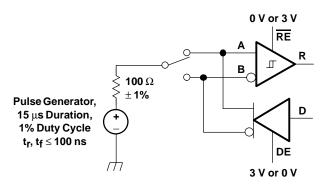


Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

SLLS533B - MAY 2002 - REVISED MAY 2003


Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

SLLS533B - MAY 2002 - REVISED MAY 2003

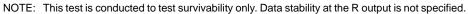
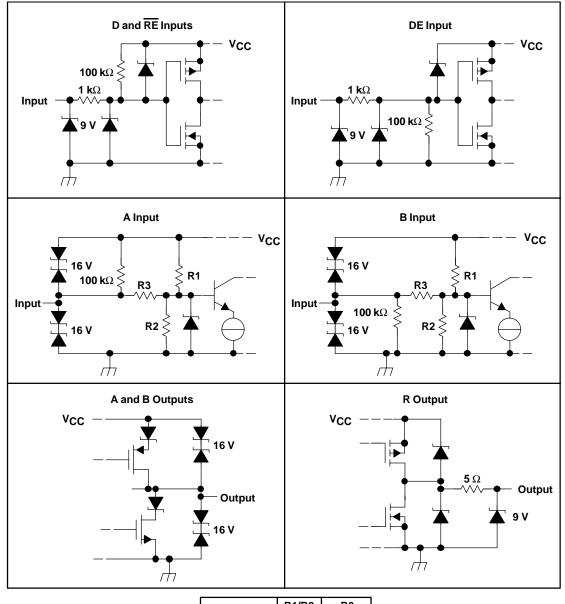


Figure 11. Test Circuit, Transient Over Voltage Test

FUNCTION TABLES

D	Rľ	VE	R

INPUT	ENABLE	OUTPUTS						
D	DE	Α	В					
Н	Н	Н	L					
L	Н	L	Н					
Х	L	Z	Z					
Open	н	Н	L					
Х	Open	Z	Z					


RE	CEI	VER	

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$V_{ID} = V_A - V_B$	RE	R
V _{ID} ≤ -0.2 V	L	L
$-0.2 V < V_{ID} < -0.01 V$	L	?
-0.01 V ≤ V _{ID}	L	Н
Х	Н	Z
Open Circuit	L	Н
Short Circuit	L	Н
X	Open	Z

H = high |eve|; L = low |eve|; Z = high impedance; X = irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

	R1/R2	R3
SN65HVD05	9 k Ω	45 k Ω
SN65HVD06	36 k Ω	180 k Ω
SN65HVD07	36 k Ω	180 k Ω

TYPICAL CHARACTERISTICS

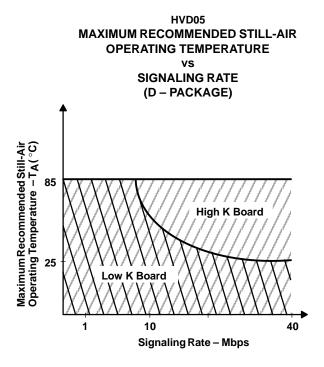


Figure 12

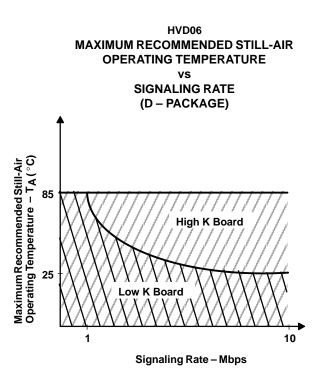
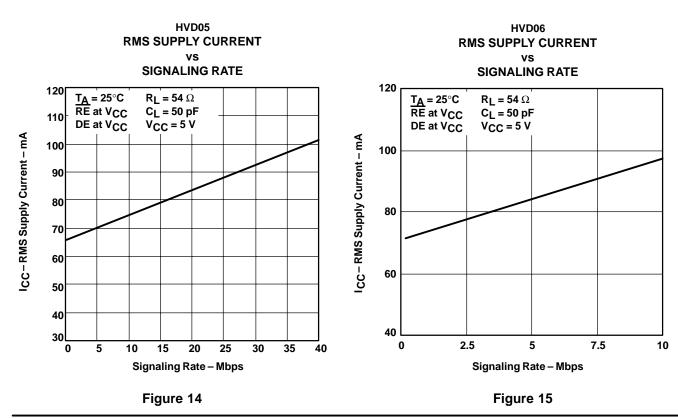
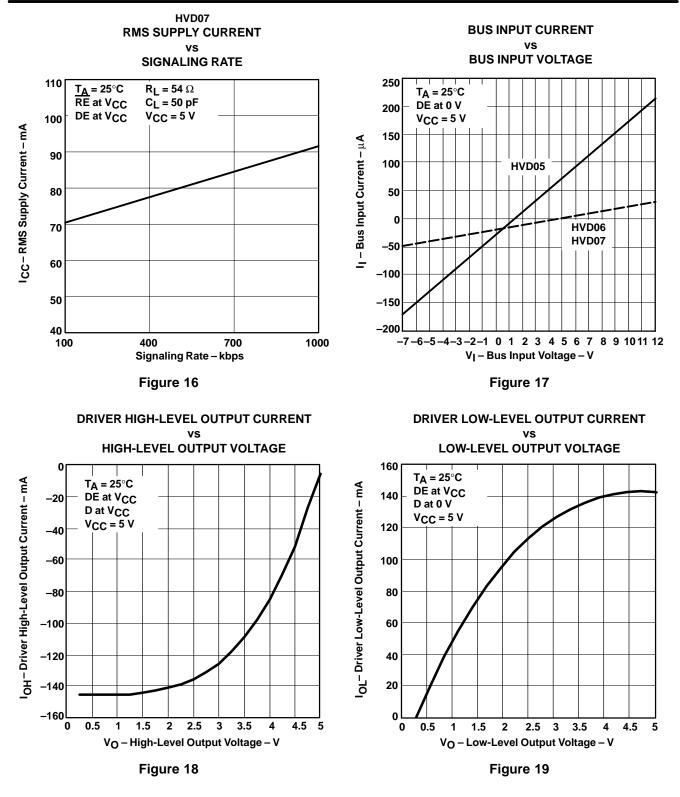
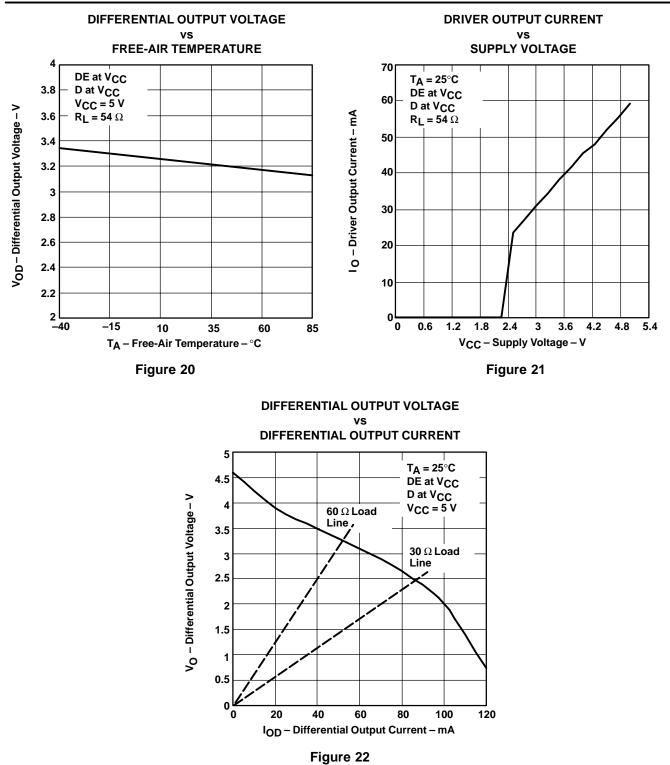




Figure 13



13

SLLS533B - MAY 2002 - REVISED MAY 2003

SLLS533B - MAY 2002 - REVISED MAY 2003

TEXAS INSTRUMENTS www.ti.com

SLLS533B - MAY 2002 - REVISED MAY 2003

APPLICATION INFORMATION

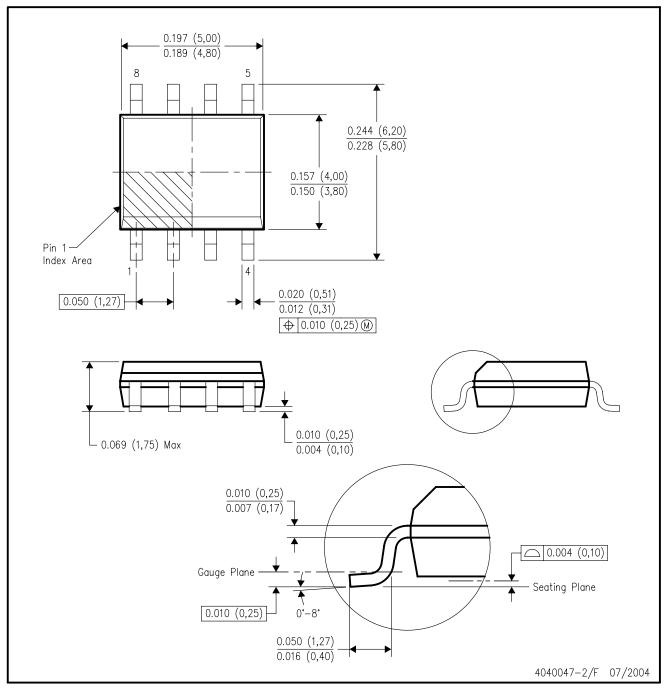


NOTE: The line should be terminated at both ends with its characteristic impedance ($R_T = Z_O$). Stub lengths off the main line should be kept as short as possible.

Figure 23. Typical Application Circuit

MECHANICAL DATA

MPDI001A - JANUARY 1995 - REVISED JUNE 1999


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated