Ultra High Capacitance, Small Case Size Options

Type EDL electric double layer supercapacitors offer extremely high capacitance values (farads) in a variety of packaging options that will satisfy, low profile, surface mount, through hole and high density assembly requirements. The EDL is a cut above the standard electrolytic capacitor in that it can act as a battery without having to deal with the environmental or hazardous material issues that batteries entail.

Highlights

- Unlimited charging and discharging capability
- Recycling is not necessary
- Long Life 15 years
- Low ESR
- Will extend battery life up to 1.6 times
- First class performance with economy pricing

Specifica	ntions
-----------	--------

Capacitance Range	0.22 F to 70 F		
Rated Voltage	2.1 Vdc to 5.5 Vdc		
Operating Temperature Range	−25 °C to +85 °C		
Case Types Radial Leaded, Stacked Coin, SMT			
RoHS Compliant			

Electric Double Layer Supercapacitor Construction

Ratings

Catalog Part Number	Capacitance	Voltage	Max. Resistance @ 1 kHz	Case Type	Case Dia.	Case Length	Style
		(Vdc)	(Ω)		(mm)	(mm)	
EDLHW335D2R3R	3.3 F		0.3		12.5	23	HW
EDLHW475D2R3R	4.7 F	2.3	0.3		12.5	23	
EDLHW106D2R3R	10 F		0.2		12.5	35	2 F
EDLHW226D2R3R	22 F	2.3	0.1	Radial Lead	18	35	1 0 2.3v50F
EDLHW306D2R3R	30 F		0.1	LCau	18	35	4
EDLHW506D2R3R	50 F		0.1		18	40	
EDLHW706D2R1R	70 F	2.1	0.1		18	50	
			1			·	
EDLF473A5R5C	0.047 F	4	120		13.5	9.5	F
EDLF104A5R5C	0.10 F		100	Stacked	13.5	9.5	Dr 1.0
EDLF474B5R5C	0.47 F	5.5	75	Coin	21.5	9.5	
EDLF684B5R5C	0.68 F		50		21.5	9.5	
EDLF105B5R5C	1.00 F		50		21.5	9.5	85 °C
		1		r		r 1	
EDLNF104A5R5C	.10 F	-	75		13.5	7.5	NF
EDLNF224A5R5C	.22 F	_	75	Stacked	13.5	7.5	.0F 1.0 5¥ 5.5
EDLNF474B5R5C	.47 F	5.5	30	Coin	21.5	8.0	
EDLNF105B5R5C	1.0 F	_	30		21.5	8.0	70 ∘ C
EDLNF155B5R5C	1.5 F		30		21.5	8.0	/∪ °C
	47 5	1	00		40	50	SG
EDLSG474V5R5C	.47 F	5.5	30	Stacked	19	5.0	20
EDLSG105V5R5C	1.0 F		30	Coin	19	5.0	
EDLSG155V5R5C	1.5 F		30		19	5.0	
EDLSG474H5R5C	.47 F	-	30	Stacked	20	6.0	
EDLSG105H5R5C	1.0 F	5.5	30	Coin	20	6.0	70 °C
EDLSG155H5R5C	1.5 F		30		20	6.0	,,, c
EDLSD223V5R5C	.022 F	1	150		10.5	5.0	SD
EDLSD473V5R5C	.022 T	-	120		10.5	5.0	
EDLSD104V5R5C	.10 F	5.5	75	Stacked	10.5	5.0	25
EDLSD224V5R5C	.22 F	- 0.0	75	Coin	10.5	5.0	
EDLSD334V5R5C	.33 F	-	75		10.5	5.0	1
EDLSD223H5R5C	.022 F		150		11.5	5.5	(
EDLSD473H5R5C	.022 T	-	120		11.5	5.5	thinger ??
EDLSD104H5R5C	.10 F	5.5	75	Stacked	11.5	5.5	SHIP-SHE
EDLSD104H5R5C	.10 F	5.5	75	Coin	11.5	5.5	1
EDLSD224H5R5C EDLSD334H5R5C	.22 F .33 F	-	75	-	11.5	5.5 5.5	70 °C
	.JJ F	1	15		11.0	5.5	ENI
EDLEN204A3R3S	.20 F	3.3	200	SMT Wide Lead	6.8	1.8	EN
EDLEN204RL3R3S	.20 F	3.3	200	SMT Radial Lead	6.8	1.8	S'L

Outline Drawings

Style F 85° C Stacked Coin

Style NF 70° C Stacked Coin

Case	Size			
code	D	L		
Α	13.5	7.5		
В	21.5	8.0		

Style SG 70° C Stacked Coin

Terminal H

6±1

Outline Drawings

Style SD 70° C Stacked Coin

Style EN 60 °C Surface Mount

Applications and Recommended Series

Application	Function	Recommended Series	Component		
Mobile Phones	Real-Time Clock Back-Up		1000		
PDA	Real-Time Clock Back-Up	EN			
DSC	Real-Time Clock Back-Up	EN, SD	i Roman i Alife		
DVD Recorder	Real-Time Clock and Channel Back-Up	SD, SG			
Digitial TV	Real-Time Clock and Channel Back-Up	SD, SG NF			
PC, Server	Real-Time Clock and Channel Back-Up	F	ar 1.00 37 5.31		
Mobile Phone Base Station	Real-Time Clock and Channel Back-Up				
Inkjet Printer	Time and Impact Back-Up	SD, SG, NF			
Electric Power Gas and Water Meters	Real-Time Clock and Data Back-Up	F	Je 100		
LED Light with Solar Battery	LED Lighting at Night	HW	5 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Toys	Motor Drives				
Toy Games	Real-Time Clock Back-Up	EN			
Robot	Real-Time Clock and Data Back-Up	F	.0r 1.0r 35 5.5i		
Car Audio Memory	Real-Time Clock Back-Up				

How to Select an Electric Double Layer Supercapacitor

Estimated initial back-up time

Back-up time for Type EDL Electric Double Layer Supercapacitors decreases with use and over time especially when the current is large or operating at high temperature. Be sure to specify extra back-up time initially to allow for product changes.

Select the optimum supercapacitor according to applied current.

The internal resistance of the supercapacitor prevents drawing high discharge currents. Select the supercapacitor capable of delivering the peak current at switchover to back-up mode using the following table.

Corioo	Maximum Operating (Discharge) Current					
Series	0.047 F	0.1 F to 0.33 F	0.47 F to 1.5 F	3.3 F to 4.7 F	10 F to 50 F	
SG, SD, NF	200 µA	300 µA	1 mA	_	_	
F	200 µA	300 µA	300 µA	_	_	
EN	_	10 µA	_	_	_	
HW	_	-	100 mA	300 mA	1 A	

Back-up Time Example

Back-up time is the time it takes for the applied voltage to decay to the cut-off voltage set by the user after applying the application's maximum voltage at application maximum temperature.

Example: An F Type EDL, P/N EDLF105B5R5C (Rated at 5.5 V, 1.0 F) is charged to 5.0 Vdc. The circuit requirement is such that it must maintain a memory circuit with a current drain of 10 μ A in an ambient temperature of +40 °C. The memory RTC cut-off voltage is 2.0 Vdc.

t: Back-up time (s)

Using minimum capacitance, calculate the back-up time as follows:

 $t = C\Delta V/I = C[V_0 - (i \cdot R) - V_1]/(i + i_1)$ $C = 1.0 F - 20\% = 0.8 F, R = 50 \Omega, V_0 = 5 V. V_1 = 2 V, i = 10 \mu A$ Therefore, $t = 0.8 (5 - 0.0005 - 2)/(10 + 2)/10^{-6} = 55 \text{ hours}$ And thus the initial back-up time is 55 hours. After 1000 hours, And thus the initial back-up time is 55 hours. After 1000 hours, C: Capacitance of Type EDL (F) $V_0: Applied voltage (V)$ $V_1: Cut-off voltage (V)$ $i_1: Leakage current (A)$ $R: Internal resistance (\Omega) at 1 kHz$

Life Design for Electric Double Layer Supercapacitors

Type EDL supercapacitors have a useful lifetime that decreases with increasing operating temperature, humidity, applied-voltage, current and backup-time requirements.

Expected lifetime is the product of four factors:

Expected Life = (Lifetime)•(Temperature Factor)•(Voltage Factor)•(Moisture Factor)

Lifetime

The minimum rated life at 85 °C with 5.5 Vdc applied is 1000 hours with maximum permitted end-of-life change of –30% capacitance and a 4 times increase in internal resistance.

Temperature Factor

To determine the effect of temperature on expected life of a supercapacitor, use the fact that expected lifetime doubles for each 10 °C that the operating temperature is reduced. As an illustration, at 85 °C and full voltage the rated lifetime is 1000 hours. So, at 40 °C the expected lifetime would be multiplied by $2^{(85-40)/10} = 2^{4.5} = 22.6$ times. The Temperature Factor is 22.6, and for 1000-h, 85 °C rated life, the expected 40 °C life would be 22600 hours.

Voltage Factor

The rate of change of capacitance decreases with decreasing applied voltage. The effect on life extension is roughly proportional to the voltage derating, e.g., 5 V applied to 5.5 V rated supercapacitors extends the life 1.1 times.

Moisture Factor

Expected life of these supercapacitors is considerably shortened by operation in high humidity. The applications discussed here assume that the relative humidity is no more that 50%.

Expected Life Example

So, for a 5.5 V supercapacitor at 40 °C charged to 5.V in less than 50% RH the expected life is

Expected Life = (Lifetime) (Temperature Factor) (Voltage Factor) (Moisture Factor)

- = (1000 h) (22.6) (1.1) (1)
- = 24800 hours
- = 2.8 years

Performance Data

Self-Discharging Characteristics Versus Charging Time

Part number EDLF105B5R5C (5.5 V 1.0 F) Charge voltage: 5 V

Charging Characteristics

Part number EDLF105B5R5C (5.5 V 1.0 F) @ +20 °C

