HiPerRF ${ }^{\text {TM }}$
 Power MOSFETs

F-Class: MegaHertz Switching

N-Channel Enhancement Mode
Avalanche Rated, Low Q_{g}, Low Intrinsic R_{g} High dV/dt, Low $t_{r r}$

Symbol	Test Conditions	Maximum	Ratings
$\begin{aligned} & \mathbf{V}_{\mathrm{DSS}} \\ & \mathbf{V}_{\mathrm{DGR}} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega$	1000	V
$\begin{aligned} & \mathbf{V}_{\text {Gs }} \\ & \mathbf{V}_{\text {GSM }} \end{aligned}$	Continuous Transient	± 20 ± 30	V
$\begin{aligned} & \mathrm{I}_{\mathrm{D} 25} \\ & \mathrm{I}_{\mathrm{DM}} \\ & \mathrm{I}_{\mathrm{AR}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \text { pulse width limited by } \mathrm{T}_{\mathrm{JM}} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	12 48 12	A A A
$\begin{aligned} & \mathrm{E}_{\mathrm{AR}} \\ & \mathrm{E}_{\mathrm{AS}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	30 1.0	mJ J
dv/dt	$\begin{aligned} & \mathrm{I}_{\mathrm{S}} \leq \mathrm{I}_{\mathrm{DD}}, \mathrm{di} / \mathrm{dt} \leq 100 \mathrm{~A} / \mu \mathrm{H}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$	5	V/ns
P_{D}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	300	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\begin{gathered} \mathbf{T}_{\mathrm{J}}{ }^{\mathbf{T}_{\mathrm{stg}}} \end{gathered}$		$\begin{array}{r} 150 \\ -55 \ldots+150 \end{array}$	${ }^{\circ} \mathrm{C}$
T	1.6 mm (0.063 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$
$M_{\text {d }}$	Mounting torque TO-247	1.13/10	Nm/lb.in.
Weight	$\begin{aligned} & \text { TO-247 } \\ & \text { TO-268 } \end{aligned}$		$\begin{array}{ll} 6 & \mathrm{~g} \\ 4 & \mathrm{~g} \\ \hline \end{array}$

Symbol Test Conditions

		min.	typ.	max.
$\mathrm{V}_{\text {Dss }}$	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	1000		V
$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~mA}$	3.0		5.5 V
$\mathrm{I}_{\text {GSs }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			$\pm 100 \mathrm{nA}$
$\mathrm{I}_{\text {DSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		$\begin{aligned} & 50 \mu \mathrm{~A} \\ & 1.5 \mathrm{~mA} \end{aligned}$
$\mathbf{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$ Note 1			1.05 ת

Characteristic Values
($T_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified)
IXFH12N100F
IXFT 12N100F
$\mathrm{V}_{\mathrm{DSS}}=1000 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D25}}=12 \mathrm{~A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}=1.05 \Omega$
$\mathrm{t}_{\mathrm{rt}} \leq 250 \mathrm{~ns}$

TO-268 (IXFT) Case Style

(TAB)

$\mathrm{G}=$ Gate,	$\mathrm{D}=$ Drain,
$\mathrm{S}=$ Source,	$\mathrm{TAB}=$ Drain

Features

- RF capable MOSFETs
- Double metal process for low gate resistance
- Rugged polysilicongatecell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance - easy to drive and to protect
- Fast intrinsic rectifier

Applications

- DC-DC converters
- Switched-mode and resonant-mode power supplies, $>500 \mathrm{kHz}$ switching
- DC choppers
- 13.5 MHz industrial applications
- Pulse generation
- Laser drivers
- RF amplifiers

Advantages

- Space savings
- High power density

IXFH 12N100F IXFT 12N100F

Symbol Test Conditions
Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. max.

$\mathrm{g}_{\text {fs }}$	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25} \quad$ Note 1 $\quad 8$	12	S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	\} $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 2700 \\ 305 \\ 93 \end{array}$	pF pF pF
$\begin{aligned} & t_{\mathrm{d}(\text { (n) }} \\ & t_{r} \\ & t_{\mathrm{d}(\text { (ff) }} \\ & t_{\mathrm{f}} \end{aligned}$	\{	$\begin{array}{r} 12 \\ 9.8 \\ 31 \\ 12 \end{array}$	ns ns ns ns
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}(o n)} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	\} $V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{I}_{\mathrm{D} 25}$	$\begin{aligned} & 77 \\ & 16 \\ & 42 \end{aligned}$	nC nC nC
$\mathrm{R}_{\text {thJC }}$			0.42 K/W
$\mathbf{R}_{\text {thck }}$	(TO-247)	0.25	K/W

Note: 1. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$

Min Recommended Footprint

IXYS reserves the right to change limits, test conditions, and dimensions.

TO-247 AD Outline

		$\frac{1}{1} \frac{1}{12}+\frac{1}{1}$		$\begin{aligned} & \text { Ter } \\ & 1- \\ & 2- \\ & 3- \\ & \text { Tab } \end{aligned}$
Dim.	Milli Min.	imeter Max.	Inch Min.	hes Max
A	4.7	5.3	. 185	. 209
A_{1}	2.2	2.54	. 087	. 102
A_{2}	2.2	2.6	. 059	. 098
b	1.0	1.4	. 040	. 055
b_{1}	1.65	2.13	. 065	. 084
b_{2}	2.87	3.12	. 113	. 123
C	4	. 8	. 016	. 031
D	20.80	21.46	. 819	. 845
E	15.75	16.26	. 610	. 640
e	5.20	5.72	0.205	0.225
L	19.81	20.32	. 780	. 800
L1		4.50		. 177
$\varnothing \mathrm{P}$	3.55	3.65	. 140	. 144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	170	. 216
S	6.15	BSC	242	BSC

TO-268 Outline

Dim.	Millimeter		Inches			
	Min.	Max.	Min.	Max.		
A	4.9	5.1	.193	.201		
$\mathrm{~A}_{1}$	2.7	2.9	.106	.114		
$\mathrm{~A}_{2}$.02	.25	.001	.010		
b	1.15	1.45	.045	.057		
$\mathrm{~b}_{2}$	1.9	2.1	.75	.83		
C	.4	.65	.016	.026		
D	13.80	14.00	.543	.551		
E	15.85	16.05	.624	.632		
E_{1}	13.3	13.6	.524	.535		
e	5.45	BSC	.215			
BSC						
H	18.70	19.10	.736	.752		
L	2.40	2.70	.094	.106		
L1	1.20	1.40	.047	.055		
L2	1.00	1.15	.039	.045		
L3	0.25		BSC	.010		BSC
L4	3.80	4.10	.150	.161		

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

