LIXYS

DPG 20 C 300PN

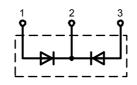
advanced

300 V

10 A

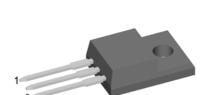
35 ns

HiPerFRED


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number (Marking on product)

DPG 20 C 300PN


Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviourAvalanche voltage rated for reliable
- operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces: - Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

 $V_{RRM} =$

t_{rr}

 $I_{FAV} = 2x$

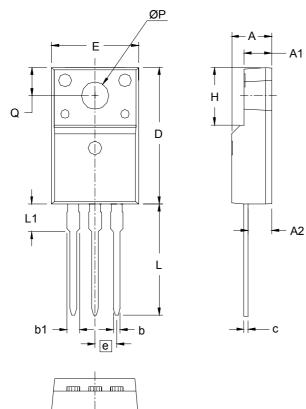
=

- TO-220FPAB
- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vJ} = 25 °C			300	V
I _R	reverse current	V _R = 300 V	T _{vJ} = 25 °C			1	μA
		V _R = 300 V	T _{vJ} = 150 °C			0.06	mA
V _F	forward voltage	I _F = 10 A	T _{vJ} = 25 °C			1.27	V
		I _F = 20 A				1.45	V
		$I_{F} = 10 A$	T _{vJ} = 150 °C			0.98	V
		I _F = 20 A				1.17	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 125 °C			10	Α
V _{F0}	threshold voltage	calculation only	T _{vJ} = 175 °C			0.69	V
r _F	slope resistance $\int for power loss$	calculation only				22.8	mΩ
R _{thJC}	thermal resistance junction to case					4.40	K/W
T _{vj}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		$T_c = 25 °C$			65	W
I _{FSM}	max. forward surge current	t_p = 10 ms (50 Hz), sine	$T_{vJ} = 45 ^{\circ}C$			100	Α
I _{RM}	max. reverse recovery current	I _E = 10 A;	T _{vj} = 25 °C		3		Α
t _{rr}	reverse recovery time	-di _⊧ /dt = 200 A/µs	T _{vJ} = 125 °C				Α
		$V_{\rm R} = 100 \rm V$	T _{vJ} = 25 °C		35		ns
			T _{vJ} = 125 °C				ns
C,	junction capacitance	V_{R} = 150 V; f = 1 MHz	$T_{VJ} = 25 °C$				pF
E _{AS}	non-repetitive avalanche energy	Ι _{AS} = A; L = μΗ	T _{vJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz				tbd	Α

LIXYS

DPG 20 C 300PN


advanced

			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*			35	Α
R _{thCH}	thermal resistance case to heatsink			0.50		K/W
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	N
T _{stg}	storage temperature		-55		150	°C
Weight				2		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

SYM	INCHES		MILLIMETERS		
1 STM	MIN	MAX	MIN	MAX	
A	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100	BSC	2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØP	.121	.129	3.08	3,28	
Q	.126	.134	3.20	3.40	