Cross-connection systems

Cross-connections across more than 10 modular terminals

The SAKD 2.5 N, SAK 2.5, SAK 4 and SAK 6 N terminals include the option of setting up a cross-connection with more than 10 poles, e.g. 20-pole: 2 No. Q $10+1$ No. QL 2.
The end fixing screws are removed from the Q 10 links by unscrewing them from the VH sleeves. The QL 2 is positioned between these and the two fixing screws screwed into their VH sleeves again. This arrangement allows 20 poles to be crossconnected.

Q pre-assembled cross-connectors

The pre-assembled cross-connector has the appropriate number of crossconnection links, cross-connection sleeves and fixing screws to match the number of poles required already installed in a captive arrangement. Such preassembled cross-connectors merely have to be inserted into the appropriate terminals during installation. These crossconnectors can be supplied in 2-, 3-, 4and 10-pole versions.

QL cross-connection links

Cross-connection links are used to provide cross-connections with equal potential across several modular terminals. The cross-connection links are made from copper or brass with an electroplated tin coating, and can be supplied in lengths to suit 2, 3, 4 and 10 poles, to match the respective terminal width. The electrical connection between the cross-connection link and the busbar of the modular terminal is by way of a connecting sleeve.

BS fixing screws

A steel fixing screw is used to connect the cross-connection link to the connecting sleeve on the busbar under a modular terminal. It is the purpose of the steel screw to provide a secure mechanical fixing between the crossconnection and the busbar. Two types of screw are used: form A has a fulllength thread, and form B has a plain shaft below the head with a captive washer.

VH connecting sleeves

The length of the connecting sleeve is matched to the size of the terminal. The sleeves are made from tin-coated copper or brass. One connecting sleeve must be used for every terminal to be crossconnected.

Potential distribution

Cross-connection systems

Q

| Rated | Pre-assembled |
| :--- | :--- | :--- |
| current | |
| of | cross-connection |

QL

QL 2	047
QL 3	047040000
QL 4	$\mathbf{0 4 7 0 5 0 0 0}$

QL $10 \quad 047060000$

QL 2	$\mathbf{0 4 7 0 7 0 0 0 0 0}$	6	2	12	3.4	4
QL 3	$\mathbf{0 4 7 0 8 0 0 0 0 0}$					
QL 4	$\mathbf{0 4 7 0 9 0 0 0 0 0}$					
QL 10	$\mathbf{0 4 7 1 0 0 0 0 0 0}$					
QL 2	$\mathbf{0 5 6 4 9 0 0 0 0 0}$	8	3	16	4.5	5

QL 2	0564900000	8	3	16	4.5	5	99 A	VH 17	0267000000	17	8	5	0267100000	A	4×30
QL 3	0565000000						99 A								
QL 4	0565100000						99 A								
QL 10	0565200000						99 A								

QL 2	$\mathbf{0 1 2 3 6 0 0 0 0 0}$	8	3	18	4.5	5
QL 3	$\mathbf{0 1 2 3 7 0 0 0 0 0}$					
QL 4	$\mathbf{0 1 2 3 8 0 0 0 0 0}$					
QL 10	$\mathbf{0 3 3 8 6 0 0 0 0 0}$					
QL 2	$\mathbf{0 3 4 5 3 0 0 0 0 0}$	14	4	22	5.5	7

QL 2	$\mathbf{0 3 4 5 3 0 0 0 0 0}$	14	4	22	5.5	7
QL 3	$\mathbf{0 1 6 7 0 0 0 0 0 0}$					
QL 2	$\mathbf{0 5 5 1 2 0 0 0 0 0}$	14	4	28	6	7
QL 3	$\mathbf{0 4 0 7 6 0 0 0 0 0}$					
QL 4	$\mathbf{0 4 0 7 7 0 0 0 0 0}$					
QL 2	$\mathbf{0 1 9 1 4 0 0 0 0 0}$	6	2	12.9	3.4	3
QL 3	$\mathbf{0 1 9 1 5 0 0 0 0 0}$					
QL 4	$\mathbf{0 1 9 1 6 0 0 0 0 0}$					
QL 10	$\mathbf{0 3 3 8 8 0 0 0 0 0}$					
QL 2	$\mathbf{0 3 2 8 0 0 0 0 0 0}$	10	4	24	4.8	5
QL 3	$\mathbf{0 3 2 8 1 0 0 0 0 0}$					
QL 4	$\mathbf{0 3 2 8 2 0 0 0 0 0}$					
QL 10	$\mathbf{0 3 3 9 0 0 0 0 0 0}$					
QL 2	$\mathbf{0 2 0 7 8 0 0 0 0 0}$	10	4	27.6	4.8	6.5
QL 3	$\mathbf{0 2 0 7 9 0 0 0 0 0}$					
QL 4	$\mathbf{0 2 0 8 0 0 0 0 0 0}$					
QL 10	$\mathbf{0 3 3 8 9 0 0 0 0 0}$					
QL 2	$\mathbf{0 2 9 7 2 0 0 0 0 0}$	4	0.8	6.1	2.8	2.5
Q 3	$\mathbf{0 2 9 7 3 0 0 0 0 0}$					

VH
$\begin{array}{ll}\text { Conti- } & \text { Connecting slee } \\ \text { without thread }\end{array}$
urrent
rating of
cross-

Type	A	Type Poles	Order No.
SAK 2.5	24 A	Q 2	0370000000
		Q 3	3710000000
		Q 4	3720000000
		Q10	0368700000
SAK 4	32 A	Q 2	0336700000
		Q 3	0336800000
		Q 4	0336900000
		Q10	0368800000
SAK 6 N	41 A	Q 2	0456700000
		Q 3	0456800000
		Q 4	0456900000
		Q10	0457000000
SAK 10	57 A	Q 2	0457100000
		Q 3	0457200000
		Q 4	0457300000
		Q 10	0457400000
SAK 16	76 A	Q 2	0457500000
		Q 3	0457600000
		Q 4	0457700000
		Q 10	0457800000

$\frac{32 \mathrm{~A}}{32 \mathrm{~A}}$
$\frac{32 \mathrm{~A}}{32 \mathrm{~A}}$
$\frac{41 \mathrm{~A}}{41 \mathrm{~A}}$
$\frac{41 \mathrm{~A}}{36 \mathrm{~A}}$

Type					Size				
Length	Order No.	L	d2	d1	Order No.	Form	M		
VH 8	0266700000	8	4.9	3.2	0359000000	B	3×15		A
:---:									
A									
A									
A									
$1 A$									
$36 A$									

41 A	VH 12	0249000000	12	5	3.2	0303000000	B	3×20
41 A								
41 A								
41 A								
57 A	VH 12	0249000000	12	5	3.2	0303000000	B	3×20

76 A	VH 12	0249000000	12	5	3.2	0303000000	B	3×20
76 A								
76 A								
76 A								
99 A	VH 17	0267000000	17	8	5	0267100000	A	4×30
99 A								
99 A								
99 A								

9 A	VH 17	0267000000	17	8	5	0267100000	A	4×30
99 A								
99 A								
A								

80 A	VH 30.5	0345500000	30.5		5.5	0345600000	A	5×45
80 A								
80 A	VH 35	0551100000	35	11	5.5	0630200000	B	5×50

SAKS 1	6,3 A		
SAKS 3	10 A		
SAKS 6	10 A		
SAKS 7	10 A		
SAKS 4	16 A		
SAKS 2	10 A		
SAKS 5	63 A		
DK 4 Q	41 A	Q 2	0336400000
DKB 4 Q/10	41 A	Q 3	0336500000

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| A | | | |
| A | 346200000 | B | 3×6 |
| | \square | | |

