
Vishay Beyschlag

ROHS COMPLIANT

AUTOMOTIVE

Precision Thin Film Chip Resistor Array

ACAS 0606 AT and ACAS 0612 AT precision automotive grade thin film chip resistor arrays with convex terminations combine the proven reliability of discrete chip resistors with the advantages of chip resistor arrays. Defined tolerance matching and TCR tracking makes this product perfectly suited for applications with outstanding requirements towards stable fixed resistor ratios. A small package enables the design of high density circuits in combination with reduction of assembly costs. Four equal resistor values or two pairs are available for the ACAS 0612 AT, whereas the ACAS 0606 AT is available either with two equal or two different resistor values.

FEATURES

- AEC-Q200 qualified
- 155 °C Film Temperature
- ESD capability 1000 V, human body model
- Advanced Thin Film Technology
- TCR tracking down to 10 ppm/K (± 5 ppm/K) and tolerance matching down to 0.1 % (± 0.05 %)
- RoHS compliant component, compatible with lead (Pb)-free and lead bearing soldering processes

APPLICATIONS

- Precision analogue circuits
- Voltage divider
- Feedback circuits
- Signal conditioning

DESCRIPTION	ACAS 0606 AT	ACAS 0612 A	
EIA size	0606	0612	
Metric size	RR1616MM	RR1632M	
Configuration, isolated	2 x 0603	4 x 0603	
Design:			
All equal values (AE)	AE	AE	
Two pairs of values (TP)		TP	
Different values (DF)	DF		
Resistance values	47 Ω to 1	50 kΩ ⁽¹⁾	
Absolute tolerance	± 0.5 %; :	± 0.25 %	
Tolerance matching ⁽²⁾	0.5 % (equivalent to \pm 0.25 %) 0.25 % (equivalent to \pm 0.125 %) 0.1 % (equivalent to \pm 0.05 %)		
Absolute temperature coefficient	± 50 ppm/K; ± 25 ppm/K		
Temperature coefficient tracking ⁽²⁾	50 ppm/K (equivalent to \pm 25 ppm/K) 25 ppm/K (equivalent to \pm 12.5 ppm/K) 15 ppm/K (equivalent to \pm 7.5 ppm/K) 10 ppm/K (equivalent to \pm 5 ppm/K)		
Max. resistance ratio R _{min.} /R _{max.}	1:20) (3)	
Rated dissipation: P ₇₀ ⁽⁴⁾			
Element	0.125 W	0.125 W	
Package	0.2 W 0.4 W		
Operating voltage, U _{max.} AC/DC	75	V	
Film temperature	155 °C		
Insulation voltage (U_{ins}) against ambient and between integrated resistors, continuous	75 V		

Notes

 $^{(1)}$ Resistance values to be selected from E24 and E96

(2) In applications with defined resistance ratios like voltage dividers or feedback circuits, an array with a defined tracking of e.g. 10 ppm/K is required to replace discrete resistors with a temperature coefficient of resistance of ± 5 ppm/K. Furthermore, in order to achieve the same tolerance of ± 0.05 % of individual resistors, an array requires a matching of 0.1 %.

(3) Higher resistance ratio is available on request

⁽⁴⁾ Please refer to APPLICATION INFORMATION, see below

Precision Thin Film Chip Resistor Array

Vishay Beyschlag

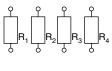
APPLICATION INFORMATION

The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded. These resistors do not feature a limited lifetime when operated within the permissible limits.

MAXIMUM RESISTANCE CHANGE AT RATED POWER ⁽¹⁾								
DESCRIPTION		ACAS	0606 AT	ACAS 0612 AT				
Configuration, isolated		2 x 0	603	4 x (0603			
Operation mode		Standard	Power	Standard	Power			
Rated power per element, P70		0.1 W	0.125 W	0.1 W	0.125 W			
Rated power per package, P70		0.15 W	0.2 W	0.3 W	0.4 W			
Film temperature		125 °C	155 °C	125 °C	155 °C			
Max. resistance change at P_{70}								
$\Delta R/R$ max., after:	1000 h	± 0.1 %	± 0.25 %	± 0.1 %	± 0.25 %			
	8000 h	± 0.25 %	± 0.5 %	± 0.25 %	± 0.5 %			
Max. relative resistance change (rela	ative drift) at P ₇₀							
$\Delta R/R$ max., after:	1000 h	0.1 % ⁽²⁾	0.25 % ⁽³⁾	0.1 % ⁽²⁾	0.25 % ⁽³⁾			
	8000 h	0.25 % (3)	0.5 % ⁽⁴⁾	0.25 % ⁽³⁾	0.5 % ⁽⁴⁾			

Notes

 $^{(1)}$ Figures are given for arrays with equal values, design type AE

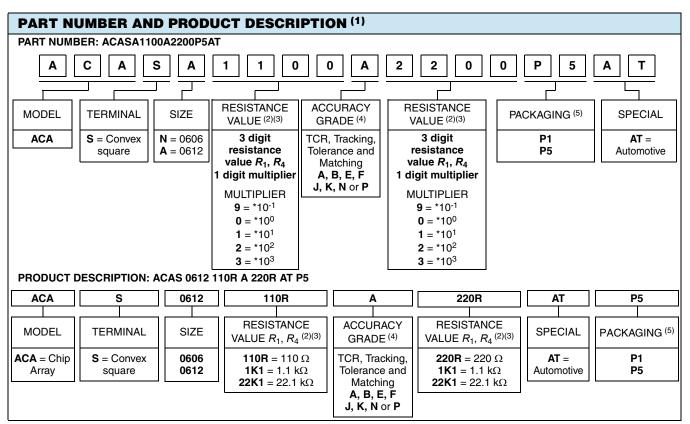

⁽²⁾ Equivalent to ± 0.05 %

 $^{(3)}$ Equivalent to \pm 0.125 %

 $^{(4)}$ Equivalent to \pm 0.25 %

SKETCHES

ACAS 0612 AT


Marking on ACAS 0606 AT: For different resistor values pin 1 is marked.

DESIGN							
ТҮРЕ	ACAS 0606 AT	ACAS 0612 AT					
AE	$R_1 = R_2$	$R_1 = R_2 = R_3 = R_4$					
ТР		$R_1 = R_4 < R_2 = R_3$					
DF	R ₁ < R ₂						

Vishay Beyschlag

Precision Thin Film Chip Resistor Array

Notes

⁽¹⁾ Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION

⁽²⁾ $R_1 = R_4 \le R_2 = R_3$

⁽³⁾ Different resistance values are available on request

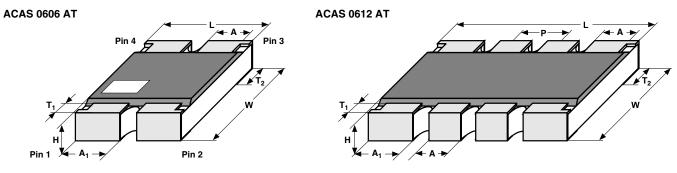
⁽⁴⁾ Please refer to table TEMPERATURE COEFFICIENT AND RESISTANCE RANGE, see below

⁽⁵⁾ Please refer to table PACKAGING, see below

TEMPERATU	EMPERATURE COEFFICIENT AND RESISTANCE RANGE									
	DESCRIPTION									
ACCURACY GRADE	ABSOLUTE TCR	TCR TRACKING (6)	ABSOLUTE TOLERANCE	TOLERANCE MATCHING ⁽⁶⁾	ACAS 0612 AT					
Α	± 25 ppm/K	10 ppm/K	± 0.25 %	0.1 %	47 Ω to 150 k Ω					
В	± 25 ppm/K	10 ppm/K	± 0.5 %	0.25 %	47 Ω to 150 k Ω					
E	± 25 ppm/K	15 ppm/K	± 0.25 %	0.1 %	47 Ω to 150 k Ω					
F	± 25 ppm/K	15 ppm/K	± 0.5 %	0.25 %	47 Ω to 150 k Ω					
J	± 25 ppm/K	25 ppm/K	± 0.25 %	0.1 %	47 Ω to 150 k Ω					
к	± 25 ppm/K	25 ppm/K	± 0.5 %	0.25 %	47 Ω to 150 k Ω					
Ν	± 50 ppm/K	25 ppm/K	± 0.5 %	0.5 %	47 Ω to 150 k Ω					
Р	± 50 ppm/K	50 ppm/K	± 0.5 %	0.5 %	47 Ω to 150 k Ω					

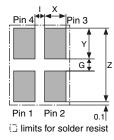
Note

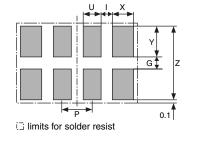
⁽⁶⁾ Please refer to TECHNICAL SPECIFICATIONS, Note ⁽²⁾, see above



Precision Thin Film Chip Resistor Array

Vishay Beyschlag


PACKAGING									
MODEL	TAPE WIDTH	DIAMETER	PIECES	РІТСН	PACKAGING CODE				
MODEL		DIAMETER	FIECES	FIGH	PAPER TAPE				
ACAS 0606 AT	8 mm	180 mm/7"	1000	4 mm	P1				
ACAS 0612 AT	8 mm	180 mm/7"	5000	4 mm	P5				


DIMENSIONS

DIMENSIONS - chip resistor array, mass and relevant physical dimensions									
ТҮРЕ	W (mm)	L (mm)	H (mm)	P (mm)	A ₁ (mm)	A (mm)	T ₁ (mm)	T ₂ (mm)	MASS (mg)
ACAS 0606 AT	1.5 ± 0.15	1.6 ± 0.15	0.45 ± 0.1	-	0.6 ± 0.15	0.4 ± 0.15	0.3 ± 0.15	0.4 ± 0.15	3.6
ACAS 0612 AT	1.5 ± 0.15	3.2 ± 0.15	0.45 ± 0.1	0.8 ± 0.1	0.6 ± 0.15	0.4 ± 0.15	0.3 ± 0.15	0.4 ± 0.15	6.8

PATTERN STYLES FOR CHIP RESISTOR ARRAYS

Dimensions in mm

RECOMMENDED SOLDER PAD DIMENSIONS FOR CHIP RESISTOR ARRAYS									
ТҮРЕ	G (mm)	Y (mm)	X (mm)	U (mm)	Z (mm)	l (mm)	P (mm)		
ACAS 0606 AT	0.8	1.15	0.64	-	3.1	0.36	0.8		
ACAS 0612 AT	0.8	1.15	0.64	0.44	3.1	0.36	0.8		

Vishay Beyschlag

Precision Thin Film Chip Resistor Array

DESCRIPTION

The production of the components is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade (96 % Al_2O_3) ceramic substrate using a mask to separate the adjacent resistors and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are realized on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics.

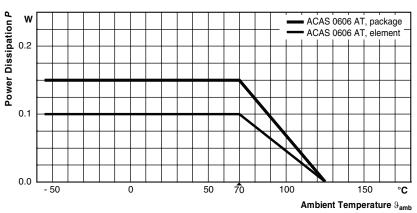
ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using reflow or vapour phase as shown in **IEC 61760-1** ⁽³⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions.

The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are RoHS compliant; the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The permitted storage time is 20 years, whereas the solderability is specified for 2 years after production or requalification. The immunity of the plating against tin whisker growth has been proven under extensive testing. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3** ⁽³⁾.

All products comply with the **GADSL**⁽¹⁾ and the **CEFIC-EECA-EICTA**⁽²⁾ list of legal restrictions on hazardous substances. This includes full compliance with the following directives:


- 2000/53/EC End of Vehicle life Directive (ELV) and Annex II (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

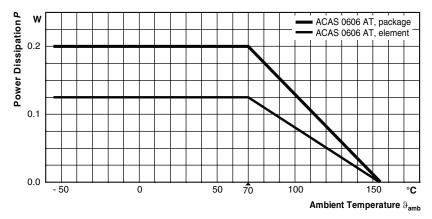
APPROVALS

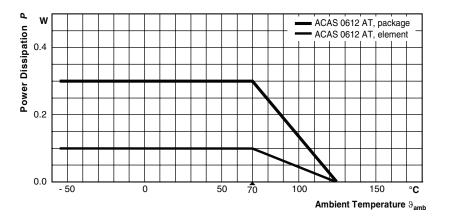
The chip resistor array is **AEC-Q200** qualified. Where applicable, the resistors are tested in accordance with **EN 140401-801** which refers to **EN 60115-1** and **EN 140400**.

Notes

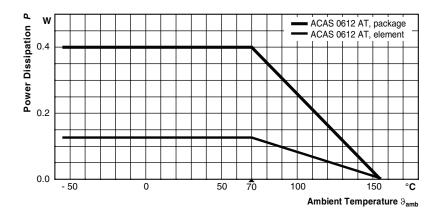
- ⁽¹⁾ Global Automotive Declarable Substance List, see <u>www.gadsl.org</u>
- (2) CEFIC (European Chemical Industry Council), EECA (European Electronic Component Manufacturers Association), EICTA (European trade organisation representing the information and communications technology and consumer electronics), see www.eicta.org → issues → environment policy → chemicals → chemicals for electronics
- ⁽³⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

FUNCTIONAL PERFORMANCE


Derating - Standard Operation ACAS 0606 AT


Precision Thin Film Chip Resistor Array

Vishay Beyschlag


FUNCTIONAL PERFORMANCE

Derating - Power Operation ACAS 0606 AT

Derating - Standard Operation ACAS 0612 AT

Derating - Power Operation ACAS 0612 AT

Vishay Beyschlag

Precision Thin Film Chip Resistor Array

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the following specifications:

EN 60115-1, Generic specification

EN 140400, Sectional specification

EN 140401-801, Detail specification

The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with **IEC 60068** ⁽⁴⁾ and under standard atmospheric conditions according to **IEC 60068-1** ⁽⁴⁾, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C

Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar)

The requirements stated in the "Test Procedures and Requirements" table are based on the required tests and permitted limits of EN 140401-801 where applicable.

TEST PROCEDURES AND REQUIREMENTS						
EN 60115-1 CLAUSE	IEC 60068-2 ⁽⁴⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS ⁽¹⁾ PERMISSIBLE CHANGE (ΔR)		
			Stability for product types:			
			ACAS 0606 AT ACAS 0612 AT	47 Ω to 150 kΩ 47 Ω to 150 kΩ		
			Climatic category (LCT/UCT/duration)	- 55 °C/+ 125 °C/56 days		
4.5	-	Resistance	-	± 0.5 %; ± 0.25 %		
4.8.4.2	-	Temperature coefficient	At 20/LCT/ 20 °C and 20/UCT/20 °C	± 50 ppm/K; ± 25 ppm/K		
4.25.1	_	Endurance at 70 °C: Standard operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{max}$; 1.5 h on; 0.5 h off; 1000 h: Absolute Relative ⁽²⁾ 8000 h: Absolute Relative ⁽²⁾	± (0.1 % R + 0.05 Ω) 0.1 % R + 0.05 Ω ± (0.25 % R + 0.05 Ω) 0.25 % R + 0.05 Ω		
		Endurance at 70 °C: Power operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{max}$; 1.5 h on; 0.5 h off; 1000 h: Absolute Relative ⁽²⁾ 8000 h: Absolute Relative ⁽²⁾	\pm (0.25 % R + 0.05 Ω) 0.25 % R + 0.05 Ω \pm (0.5 % R + 0.05 Ω) 0.5 % R + 0.05 Ω		
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h: Absolute Relative ⁽²⁾ 125 °C; 8000 h: Absolute Relative ⁽²⁾ 155 °C; 1000 h: Absolute Relative ⁽²⁾	$\pm (0.25 \% R + 0.05 Ω)$ 0.25 % R + 0.05 Ω) $\pm (0.5 \% R + 0.05 Ω)$ 0.5 % R + 0.05 Ω $\pm (0.4 \% R + 0.05 Ω)$ 0.4 % R + 0.05 Ω		

Precision Thin Film Chip Resistor Array

Vishay Beyschlag

TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 ⁽⁴⁾ TEST METHOD	TEST	PROCEDURE	REQUIREMENTS ⁽¹⁾ PERMISSIBLE CHANGE (\(\triangle R))			
			Stability for product types:				
			ACAS 0606 AT ACAS 0612 AT	47 Ω to 150 kΩ 47 Ω to 150 kΩ			
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	\pm (0.25 % <i>R</i> + 0.05 Ω)			
4.39	67 (Cy)	Damp heat, steady state, accelerated	(85 ± 2) °C (85 ± 5) % RH <i>U</i> = 0.1 x √ <i>P</i> ₇₀ x <i>R</i> ≤ 100 V; 1000 h	± (0.5 % <i>R</i> + 0.05 Ω)			
4.13	-	Short time overload ⁽³⁾	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max.};$ 5 s	± (0.1 % <i>R</i> + 0.01 Ω) no visible damage			
4.40	-	Electrostatic discharge (Human body model) ⁽³⁾	IEC 61340-3-1; 3 pos. + 3 neg. (equivalent to MIL-STD-883, Method 3015); 1000 V	± (0.5 % <i>R</i> + 0.05 Ω)			
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; 1000 cycles	± (0.25 % <i>R</i> + 0.05 Ω) no visible damage			
4.18.2	58 (Td)	Resistance to soldering heat	Reflow method 2 (IR/forced gas convention); $(260 \pm 5) \circ C;$ $(10 \pm 1) s$	± (0.1 % <i>R</i> + 0.01 Ω) no visible damage			
4.17.2	58 (Td)	Solderability	Solder bath method; SnPb; non-activated flux accelerated aging 4 h/155 °C (215 ± 3) °C; (3 ± 0.3) s Solder bath method; SnAgCu; non-activated flux accelerated aging 4 h/155 °C (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered); no visible damage			
4.32	21 (Ue ₁)	Shear (adhesion)	45 N	No visible damage			
4.33	21 (Ue ₃)	Substrate bending	Depth 2 mm, 3 times	\pm (0.1 % R + 0.01 Ω) no visible damage; no open circuit in bent position			
4.35	-	Flammability	IEC 60695-11-5, needle flame test; 10 s	No burning after 30 s			
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 6 h	± (0.1 % <i>R</i> + 0.01 Ω); no visible damage			
4.7	-	Voltage proof	$U_{\rm rms} = U_{\rm ins}$ 60 ± 5 s; against ambient, between adjacent resistors	No flashover or breakdown			

Notes

 $^{(1)}$ Figures are given for arrays with equal values, design type AE

 $^{(2)}$ Relative drift values are equivalent to the half of its value with ± symbol, i.e. 0.1 % is equivalent to ± 0.05 %

 $^{\rm (3)}$ For a single element

⁽⁴⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents