SEMIX 241DH ...

SEMiX[®] 13s

Bridge Rectifier Module (halfcontrolled)

SEMIX 241DH

Target Data

Features

- terminal height of 17mm
- chip solder on direct copper
- bonded Al₂O₃ ceramic
 heat transfer through Al₂O₃ ceramic isolated baseplate

Typical Applications

- Input Bridge Rectifier for
- AC/DC motor control
- power supply

V _{RSM}	V_{RRM}, V_{DRM}	I _D = 240 A (full conduction)
V	V	(T _c = 85 °C)
1700	1600	SEMiX 241DH16s

Symbol	Conditions	Values	Units
I _D	T _c = 85 °C	240	Α
	T _c = 100 °C	200	Α
I _{TSM,} I _{FSM}	T _{vi} = 25 °C; 10 ms	2250	А
TOW, TOW	T _{vi} = 130 °C; 10 ms	1900	Α
i²t	T _{vi} = 25 °C; 8,3 10 ms	25300	A²s
	T _{vj} = 130 °C; 8,3 10 ms	18000	A²s
V _T	T _{vi} = 25 °C; I _T = 300	max. 1,9	V
$V_{T(TO)}$	T _{vi} = 130 °C;	max. 0,85	V
r _T	T _{vi} = 130 °C	max. 4	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 \text{ °C}; V_{DD} = V_{DRM}, V_{RD} = V_{RRM}$	max. 24	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/µs}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	2	μs
(dv/dt) _{cr}	T _{vi} = 130 °C	max. 1000	V/µs
(di/dt) _{cr}	T _{vi} = 130 °C; f = 50 Hz	max. 100	A/µs
t _q	T _{vi} = 130 °C; typ.	150	μs
I _H	T_{vi} = 25 °C; typ. / max.	150 / 250	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33$	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 6	mA
R _{th(j-c)}	per thyristor	0,32	K/W
<i>,</i>	per diode	0,32	K/W
$R_{th(c-s)}$	per module	0,04	K/W
T _{vi}		- 40 + 130	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	4800 (4000)	V
M _s	(min./max.)	3/5	Nm
M _t	(min./max.)	2,5/5	Nm
a	(5 * 9,81	m/s²
m		300	g
Case	SEMiX13s		
	·····		1

SEMIX 241DH ...

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.