

60V N-Channel MOSFET

TO-92

Pin Definition:

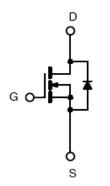
- 1. Source
- 2. Gate
- 3. Drain

PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (mA)	
60	5 @ V _{GS} = 10V	75	

Features

- Fast Switching Speed
- Low Input and Output Leakage


Application

- Direct Logic-Level Interface: TTL/CMOS
- Solid-State Relays

Ordering Information

Part No.	Package	Packing
TSM2N7000CT B0	TO-92	1Kpcs / Bulk
TSM2N7000CT A3	TO-92	2Kpcs / Ammo

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

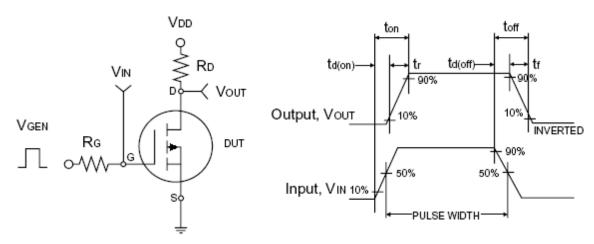
Parameter	ter		Limit	Unit	
Drain-Source Voltage		V_{DS}	60	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current		I _D	200	mA	
Pulsed Drain Current		I _{DM} 500		mA	
Continuous Source Current (Diode Cond	luction) ^{a,b}	I _S	500	mA	
	Ta = 25°C	D	350	\A/	
Maximum Power Dissipation		280	mW		
Operating Junction Temperature		TJ	+150	°C	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	-55 to +150	°C	

Thermal Performance

Parameter	Symbol	Limit	Unit
Lead Temperature (1/8" from case)	T _L	10	S
Junction to Ambient Thermal Resistance (PCB mounted)	RO _{JA}	357	°C/W

Notes:

- a. Pulse width limited by the Maximum junction temperature
- b. Surface Mounted on FR4 Board, t ≤ 5 sec.


60V N-Channel MOSFET

Electrical Specifications (Ta = 25°C, unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 10\mu A$	BV _{DSS}	60			V
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1mA$	$V_{GS(TH)}$	8.0		3.0	V
Gate Body Leakage	$V_{GS} = \pm 15V, V_{DS} = 0V$	I _{GSS}			±10	nA
Zero Gate Voltage Drain Current	$V_{DS} = 48V, V_{GS} = 0V$	I _{DSS}			1.0	μA
Dunin Course On State Besistance	$V_{GS} = 10V, I_D = 75mA$	0			5.3	Ω
Drain-Source On-State Resistance	$V_{GS} = 4.5V, I_D = 75mA$	$R_{DS(ON)}$			5	
Forward Transconductance	$V_{DS} = 10V, I_{D} = 200mA$	g _{fs}	100			mS
Diode Forward Voltage	I _S = 200mA, V _{GS} = 0V	V_{SD}		1.3	1.5	V
Dynamic ^b						
Input Capacitance	\/ - 05\/ \/ - 0\/	C _{iss}		60		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	C _{oss}		25		pF
Reverse Transfer Capacitance	7 I - 1.0IVIDZ	C _{rss}		5		
Switching ^c						
Turn-On Rise Time	$V_{DD} = 15V, R_L = 30\Omega,$ $I_D = 200mA,$	t _r		10		200
Turn-Off Fall Time	$V_{GEN} = 10V, R_G = 25\Omega$	t _f		10		nS

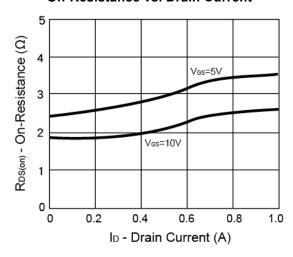
Notes:

- a. pulse test: PW ≤300µS, duty cycle ≤2% b. For DESIGN AID ONLY, not subject to production testing.
- b. Switching time is essentially independent of operating temperature.

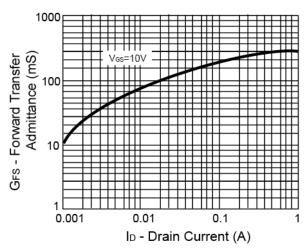
Switching Test Circuit

Switchin Waveforms

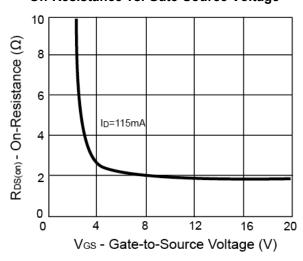
60V N-Channel MOSFET

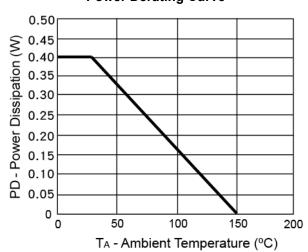


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)



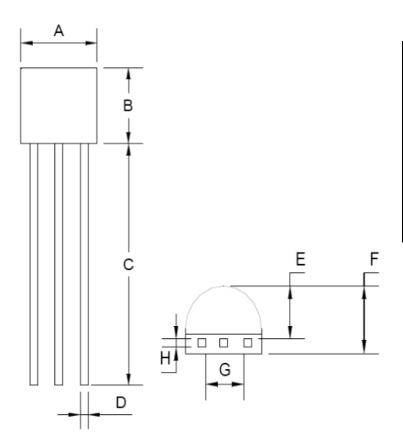
Transfer Characteristics 1.4 1.2 Ib - Drain Current (A) 1.0 0.8 0.6 0.4 0.2 5 9 4 6 10 0 V_{GS} - Gate-to-Source Voltage (V)


On-Resistance vs. Drain Current


Forward Transfer Admittance vs. Drain Current

On-Resistance vs. Gate-Source Voltage

Power Derating Curve



60V N-Channel MOSFET

TO-92 Mechanical Drawing

TO-92 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	4.30	4.70	0.169	0.185	
В	4.30	4.70	0.169	0.185	
С	14.30(typ)		0.563(typ)		
D	0.43	0.49	0.017	0.019	
Е	2.19	2.81	0.086	0.111	
F	3.30	3.70	0.130	0.146	
G	2.42	2.66	0.095	0.105	
Н	0.37	0.43	0.015	0.017	

TSM2N7000 60V N-Channel MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.