	SI
C	

Compact Video Driver Series for DSCs and Portable Devices

Ultra-compact Waferlevel Chip Size Packeage Single Output Video Drivers

BH76906GU, BH76909GU, BH76912GU, BH76916GU, BH76706GU

Description

Due to a built-in charge pump circuit, this video driver does not require the large capacity tantalum capacitor at the video output pin that is essential in conventional video drivers. Features such as a built-in LPF that has bands suited to mobile equipment, current consumption of 0 μ A at standby, and low voltage operation from as low as 2.5 V make it optimal for digital still cameras, mobile phones, and other equipment in which high density mounting is demanded.

Features

- 1) WLCSP ultra-compact package (1.6 mm x 1.6 mm x 0.75 mm)
- 2) Improved noise characteristics over BH768xxFVM series
- 3) Four video driver amplifier gains in lineup: 6 dB, 9 dB, 12 dB, 16.5 dB
- 4) Large output video driver of maximum output voltage 5.2 Vpp. Ample operation margin for supporting even low voltage operation
- 5) Output coupling capacitor not needed, contributing to compact design
- 6) Built-in standby function and circuit current of 0 μ A (typ) at standby
- 7) Clear image playback made possible by built-in 8th-order 4.5 MHz LPF
- 8) Due to use of bias input format, supports not only video signals but also chroma signals and RGB signals
- 9) Due to built-in output pin shunt switch, video output pin can be used as video input pin (BH76706GU)

Application

Mobile phone, digital still camera, digital video camera, hand-held game, portable media player

	Product Name	Video Driver Amplifier Gain	Recommended Input Level	Video Output Pin Shunt Function
	BH76906GU	6dB	1Vpp	
	BH76909GU	9dB	0.7Vpp	
ſ	BH76912GU	12dB	0.5Vpp	_
	BH76916GU	16.5dB	0.3Vpp	-
	BH76706GU	6dB	1Vpp	0

●Lineup

• Absolute Maximum Ratings $(T_a = 25 \degree C)$

Parameter	Symbol	Rating	Unit
Supply voltage	Vcc	3.55	V
Power dissipation	Pd	580	mW
Operating temperature range	Topr	-40~+85	°C
Storage temperature range	Tstg	-55~+125	°C

* When mounted on a 50 mm×58 mm×1.6 mm glass epoxy board, reduce by 5.8mW/°C above Ta=+25°C.

Operating Range

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	2.5	3.0	3.45	V

Electrical Characteristics

[Unless otherwise specified, Ta = 25 °C, VCC = 3V]

Demonster	Typical Values			1.1	Magazinamant Canditiana			
Parameter	Symbol	76906	76909	76912	76916	76706	Unit	Measurement Conditions
Circuit current 1-1	CC1-1		15.0			mA	In active mode (No signal)	
Circuit current 1-2	I _{CC1-2}		17.0			mA	In active mode (Outputting NTSC color bar signal)	
Circuit current 2	I _{CC2}			0.0			μA	In standby mode
Circuit current 3	I _{CC3}		-	_		100	μA	In input mode (Applying B3 = 1.5 V)
Standby switch input current High Level	I _{thH1}		4	5			μA	Applying B3 = 3.0 V
Standby switch switching voltage High Level	V_{thH1}		1.2\	/ min		-	V	Active mode
Standby switch switching voltage Low Level	V _{thL1}		0.45	Vmax			V	Standby mode
Standby switch outflow current High Level	I _{thH2}					0	μA	Applying B3 = 3.0 V
Standby switch outflow current Middle Level	I _{thM2}					8	μA	Applying B3 = 1.5 V
Standby switch outflow current Low Level	I _{thL2}					23	μA	Applying B3 = 0 V
Mode switching voltage High Level	V_{thH2}	2		VCC -0.2 (MIN.)	V	Standby mode		
Mode switching voltage Middle Level	V _{thM2}				VCC/2 (TYP.)	V	Input mode	
Mode switching voltage low Level	V_{thL2}					0.2 (MAX.)	V	Active mode
Voltage gain	Gv	6.0	9.0	12.0	16.5	6.0	dB	Vo=100kHz, 1.0Vpp
Maximum output level	Vomv			5.2			Vpp	f=10kHz,THD=1%
Frequency characteristic 1	G _{f1}		-0.2		-0.2	dB	f=4.5MHz/100KHz	
Frequency characteristic 2	G _{f2}		-1	.5		-1.4	dB	f=8.0MHz/100KHz
Frequency characteristic 3	G _{f3}		-2	26		-28	dB	f=18MHz/100KHz
Frequency characteristic 4	G _{f4}		_2	14		-48	dB	f=23.5MHz/100KHz
Differential gain	D_G			0.5			%	Vo=1.0Vp-p Inputting standard staircase Signal
Differential phase	D _P			1.0			deg	Vo=1.0Vp-p Inputting standard staircase signal
Y signal to noise ratio	SNY	+74	+73	+70	+70	+74	dB	100 kHz~6MHz band Inputting 100% white video signal
C AM signal to noise ratio	SN _{CA}	+77	+76	+75	+75	+77	dB	100~500 kHz band Inputting 100% chroma video signal
C PM signal to noise ratio	SN _{CP}	+65			dB	100~500 kHz band Inputting 100% chroma video signal		
Current able to flow into output pin	lextin	30			mA	Applying 4.5 V to output pin through 150 Ω		
Output DC offset	Voff	±50max			mV	With no signal Voff = (Vout pin voltage) ÷ 2		
Input impedance	Rin			150			kΩ	Measure inflowing current when applying A3 = 1 V
Output pin shunt switch on resistance	Ron		-	_		3	Ω	

Fig. 1

※ A test circuit is a circuit for shipment inspection and differs from an application circuit example.

Block Diagram

(a) BH76906/09/12/16GU

(b) BH76706GU

Fig. 2

Operation Logic

BH769xxGU

STBY Pin Logic	Operating Mode	
Н	Active	
L	Standby	
OPEN	Standby	

BH76706GU

STBY Pin Logic	Operating Mode	SW1	SW2
Н	Standby	OFF	OFF
М	Input (Record)	ON	OFF
L	Active (Playback)	OFF	ON

%Use of the BH76706GU with the STBY pin OPEN is inappropriate

Pin Descriptions

Note 1) DC voltages in the figure are those when VCC = 3.0 V. Moreover, these values are reference values which are not guaranteed.

Note 2) Numeric values in the figure are settings which do not guarantee ratings.

Note 1) DC voltages in the figure are those when VCC = 3.0 V. Moreover, these values are reference values which are not guaranteed.

Note 2) Numeric values in the figure are settings which do not guarantee ratings.

Description of Operation

1) Principles of output coupling capacitorless video drivers

For an amplifier operated from a single power supply (single-supply), since the operating point has a potential of approximately 1/2 Vcc, a coupling capacitor is required for preventing direct current in the output. Moreover, since the load resistance is 150 Ω (75 Ω + 75 Ω) for the video driver, the capacity of the coupling capacitor must be on the order of 1000 μ F if you take into account the low band passband. (Fig.3)

For an amplifier operated from dual power supplies (+ supply), since the operating point can be at GND level, a coupling capacitor for preventing output of direct current is not needed. Moreover, since a coupling capacitor is not needed, in principle, there is no lowering of the low band characteristic at the output stage. (Fig.4)

2) Occurrence of negative voltage due to charge pump circuit

A charge pump, as shown in Fig. 5, consists of a pair of switches (SW1, SW2) and a pair of capacitors (flying capacitor, anchor capacitor). Switching the pair of switches as shown in Fig. 5 causes a negative voltage to occur by shifting the charge in the flying capacitor to the anchor capacitor as in a bucket relay.

In this IC, by applying a voltage of +3 V, a negative voltage of approximately -2.8 V is obtained.

Fig.5 Principles of Charge Pump Circuit

3) Configuration of BH769xxGU and BH76706GU

As shown in Fig. 6, a BH769xxGU or BH76706GU is a dual-supply amplifier and charge pump circuit integrated in one IC. Accordingly, while there is +3 V single-supply operation, since a dual-supply operation amplifier is used, an output coupling capacitor is not needed.

4) Input pin format and sag characteristic

While a BH769xxGU or BH76706GU is a low voltage operation video driver, since it has a large dynamic range of approximately 5.2 Vpp, a resistance termination method that is compatible regardless of signal form (termination by 150 k Ω) is used, and not a clamp method that is an input method exclusively for video signals.

Therefore, since a BH769xxGU or BH76706GU operates normally even if there is no synchronization signal in the input signal, it is compatible with not only normal video signals but also chroma signals and R.G.B. signals and has a wide application range.

Moreover, concerning sag (lowering of low band frequency) that occurs at the input pin and becomes a problem for the resistance termination method, since the input termination resistor is a high 150 k Ω , even if it is combined with a small capacity input capacitor, a sag characteristic that is not a problem in actual use is obtained.

In evaluating the sag characteristic, it is recommended that you use an H-bar signal in which sag readily stands out. (Fig. 8 to Fig. 10)

a) Video signal without sag (TG-7/1 output, H-bar)

Fig. 8

BH769xxGU or BH76706GU output (Input = 1.0 µF, TG-7/1 output, H-bar) b)

TG-7/1

Fig. 10

At playback (Active mode)

* SW1 and SW2 are built-in BH76706GU only

Recording (Input mode) BH76706GU only

See page 3/16 for STBY pin logic in each mode

Fig.11

We are confident in recommending the above application circuit example, but we ask that you carefully check not just the static characteristics but also transient characteristics of this circuit before using it.

Caution on use

- Wiring from the decoupling capacitor C4 to the IC should be kept as short as possible. Moreover, this capacitor's capacitance value may have ripple effects on the IC, and may affect the S-N ratio for signals, so we recommend using as large a decoupling capacitor as possible. (Recommended C4: 3.3 μF, B characteristics, 6.3 V or higher maximum voltage) Make mount board patterns follow the layout example shown on page 10 as closely as possible.
- Capacitors to use In view of the temperature characteristics, etc., we recommend a ceramic capacitor with B characteristics.
- The NVCC (C1 pin) terminal generates a voltage that is used within the IC, so it should never be connected to a load unless absolutely necessary. Moreover, this capacitor (C2) has a large capacitance value but very little negative voltage ripple. (Recommended C2: 1.0 µF, B characteristic, 6.3 V or higher maximum voltage)

- Capacitors C1 and C4 should be placed as close as possible to the IC. If the wiring to the capacitor is too long, it can lead to intrusion of switching noise. (Recommended C1: 1.0 μF, B characteristics, 6.3 V or higher maximum voltage)
- 5. The HPF consists of input coupling capacitor C3 and 150 kΩ of internal input impedance. Be sure to check for video signal sag before determining the C3 value. The cut-off frequency fc can be calculated using the following formula. fc = 1/(2 π × C3 × 150kΩ) (Recommended C3: 1.0 μF, B characteristic, 6.3 V or higher maximum voltage)
- 6. The output resistor R2 should be placed close to the IC.
- 7. If the IC is mounted in the wrong direction, there is a risk of damage due to problems such as inverting VCC and GND. Be careful when mounting it.
- 8. A large current transition occurs in the power supply pin when the charge pump circuit is switched. If this affects other ICs (via the power supply line), insert a resistor (approximately 10 Ω) in the VCC line to improve the power supply's ripple effects. Although inserting a 10 Ω resistor lowers the voltage by about 0.2 V, this IC has a wide margin for low-voltage operation, so dynamic range problems or other problems should not occur. (See Figures 12 to 14.)

Fig.12 Effects of Charge Pump Circuit Current Ripple on External Circuit

Waveform of current between power supply and capacitor (A) 10 mA/div

Waveform of current between capacitor and IC (B) 10 mA/div

Vcc

2) Decoupling capacitor + 10 Ω resistor

Vcc

Layer 1 wiring + Silkscreen legend

Layer 2 wiring

Solder pattern

Fig	•	1	5
-----	---	---	---

Parts List					
Symbol	Function	Recommended Value	Remarks		
C1	Flying capacitor	1μF	B characteristic recommended		
C2	Tank capacitor	1μF	B characteristic recommended		
C3	Input coupling capacitor	1μF	B characteristic recommended		
C4	Decoupling capacitor	3.3 µ F	B characteristic recommended		
R1	Input termination resistor	75Ω	Needed when connected to video signal measurement set		
R2	Output resistor	75Ω	—		
D2		75.0	Not needed when connected to TV or video signal		
КЭ	Output termination resistor	7502	measurement set		
	Input connector	BNC			
	Output connector	RCA (Pin jack)			

Reference Data

Fig. 16 Circuit Current vs Supply Voltage

Fig. 19 Standby Circuit Current vs Ambient Temperature

vs Supply Voltage

BH76906GU

VCC=3V

Fig. 23 VOUT Pin Output DC Offset vs Ambient Temperature

Ta=25℃

BH76906GU

Fig. 21 GND Mode Circuit Current vs Ambient Temperature

Fig. 24 Frequency Characteristic

Fig. 27 Voltage Gain vs Ambient Temperature

Fig. 28 Frequency Characteristic 1 vs Supply Voltage

Fig. 31 Frequency Characteristic 2 vs Ambient Temperature

POWER SUPPLY VOLTAGE [V]

Fig. 37 Max. Output Level vs Ambient Temperature

Fig. 29 Frequency Characteristic 1 vs Ambient Temperature

POWER SUPPLY VOLTAGE [V]

Fig.32 Frequency Characteristic 3 vs Supply Voltage

TEMPERATURE [℃]

Fig. 35 Frequency Characteristic 4 vs Ambient Temperature

Fig. 30 Frequency Characteristic 2 vs Supply Voltage

TEMPERATURE [°C] Fig.33 Frequency Characteristic 3 vs Ambient Temperature

POWER SUPPLY VOLTAGE [V]

Fig. 36 Max. Output Level vs Supply Voltage

Fig. 47 Y S/N vs Supply Voltage

Fig. 49 C AM S/N vs Supply Voltage

Fig. 51 C PM S/N vs Supply Voltage

Fig. 53 Input Impedance vs Supply Voltage

TEMPERATURE [°C] Fig.48 Y S/N vs Ambient Temperature

Fig. 50 C AM S/N vs Ambient Temperature

Fig. 52 C PM S/N vs Ambient Temperature

Fig. 55 Control Pin Characteristic

Fig. 57 Output Pin Shunt Switch On Resistance vs Supply Voltage

Fig. 56 Control Pin Characteristic

Fig. 58 Output Pin Shunt Switch On Resistance vs Ambient Temperature

Performing separate electrostatic damage countermeasures

When adding an externally attached electrostatic countermeasure element to the output pin, connect a varistor in the position shown in Fig. 59 (if connected directly to the output pin, the IC could oscillate depending on the capacity of the varistor). For this IC, since the output waveform is GND-referenced and swings positive and negative, a normal Zener diode cannot be used.

Fig.59 Using Externally Attached Varistor

Tape and Reel information

2

VCSP85H1

- The contents described herein are correct as of November. 2006
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
- Any part of this application note must not be duplicated or copied without our permission.

Seou Mas Dalia

Beiji

Shar

Hang

Ning Qing

Suzi

Hone

Don Fuzh

Gua

Xian

Zhuł Taip Kaol

Man

- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO, LTD, disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer
- The products described herein utilize silicon as the main mate
- The products described herein are not designed to be X ray proof.
- The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

Excellence i	in El	ectroni	CS
--------------	-------	---------	----

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585 Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http: // www. rohm. com

Published by LSI Business Promotion Dept.

Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183
Shanghai	TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
Hangzhou	TEL: +86-571-87658072	FAX: +86-571-87658071
Nanjing	TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
Ningbo	TEL: +86-574-87654201	FAX: +86-574-87654208
Qingdao	TEL: +86-532-5779-312	FAX:+86-532-5779-653
Suzhou	TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183
Wuxi	TEL: +86-510-82702693	FAX: +86-510-82702992
Hong Kong	TEL: +852-2-740-6262	FAX: +852-2-375-8971
Dongguan	TEL: +86-769-393-3320	FAX: +86-769-398-4140
Fuzhou	TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
Guangzhou	TEL: +86-20-8364-9796	FAX: +86-20-8364-9707
Shenzhen	TEL: +86-755-8307-3001	FAX: +86-755-8307-3003
Xiamen	TEL: +86-592-239-8382	FAX: +86-592-239-8380
Zhuhai	TEL: +86-756-3232-480	FAX: +86-756-3232-460
Taipei	TEL: +866-2-2500-6956	FAX: +866-2-2503-2869
Kaohsiung	TEL: +886-7-237-0881	FAX: +886-7-238-7332
Singapore	TEL: +65-6332-2322	FAX: +65-6332-5662
Manila	TEL: +63-2-807-6872	FAX: +63-2-809-1422

Bangkok
Kuala Lumpur
Penang
Dusseldorf
Munich
Stuttgart
France
United Kingdom
Denmark
Barcelona
Malaga
Hungary
Poland
Russia
San Diego
Atlanta
Boston
Chicago
Dallas
Denver
Nashville
Guadalaiara

т

T T

T T

Т

T T T T T

T T T

Т

T T

Т

EL: +66-2-254-4890	FAX: +66-2-256-6334
EL: +60-3-7958-8355	FAX: +60-3-7958-8377
EL: +60-4-6585084	FAX: +60-4-6585167
EL: +49-2145-9210	FAX: +49-2154-921400
EL: +49-8161-48310	FAX: +49-8161-483120
EL: +49-711-72723710	FAX: +49-711-72723720
EL: +33-1-5697-3060	FAX: +33-1-5697-3080
EL: +44-1-908-306700	FAX: +44-1-908-235788
EL: +45-3694-4739	FAX: +45-3694-4789
EL: +34-9375-24320	FAX: +34-9375-24410
EL: +34-9520-20263	FAX: +34-9520-20023
EL: +36-1-4719338	FAX: +36-1-4719339
EL: +48-22-5757213	FAX: +48-22-5757001
EL: +7-95-980-6755	FAX: +7-95-937-8290
EL: +1-858-625-3630	FAX: +1-858-625-3670
EL: +1-770-754-5972	FAX: +1-770-754-0691
EL: +1-978-371-0382	FAX: +1-928-438-7164
EL: +1-847-368-1006	FAX: +1-847-368-1008
EL: +1-972-312-8818	FAX: +1-972-312-0330
EL: +1-303-708-0908	FAX: +1-303-708-0858
EL: +1-615-620-6700	FAX: +1-615-620-6702
EL +52-33-3123-2001	FAX: +52-33-3123-2002

Catalog No.06T216A '06.11 ROHM©1600 TSU

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

Appendix1-Rev2.0

rohm