LIXYS

DPG 120 C 300QB

advanced

 $V_{RRM} = 300 V$ $I_{FAV} = 2x 60 A$ $t_{rr} = 35 ns$

Package:

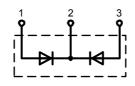
- TO-3P
- Industry standard outline
 - compatible with TO-247

Ratings

- Epoxy meets UL 94V-0RoHS compliant
 - Rono compliant
- Symbol Definition Conditions Unit min. typ. max. max. repetitive reverse voltage $T_{VJ} = 25 °C$ 300 V VRRM $V_{R} = 300 V$ $T_{v.l} = 25 \,^{\circ}C$ I_R reverse current 1 μΑ $V_{R} = 300 V$ T_{vJ} = 150 °C 0.35 mΑ $I_{c} = 60 A$ $T_{v,i} = 25 \,^{\circ}C$ 1.40 V_F V forward voltage I_c = 120 A v 1.72 $I_{\rm F} = 60 \, {\rm A}$ T_{v.1} = 150 °C 1.10 V I_c = 120 A 1.45 V rectangular, d = 0.5 T_c = 125 °C I_{FAV} average forward current 60 A threshold voltage T_{v1} = 175 °C V V_{F0} 0.69 for power loss calculation only slope resistance 5.8 mΩ r_F thermal resistance junction to case 0.55 K/W R_{thJC} virtual junction temperature -55 °C T_{vj} 175 total power dissipation W P_{tot} $T_c = 25 °C$ 275 max. forward surge current $t_{o} = 10 \text{ ms} (50 \text{ Hz}), \text{ sine}$ $T_{VJ} = 45 \,^{\circ}C$ 550 A I_{FSM} max. reverse recovery current $T_{VI} = 25 \,^{\circ}C$ 3 А I_{RM} $I_{\rm F} = 60 \, {\rm A};$ T_{v.1} = 125 °C A -di_/dt = 200 A/µs t m $T_{v,l} = 25 \,^{\circ}C$ reverse recovery time 35 ns V_R = 100 V T_{VJ} = 125 °C ns $V_{R} = 150 V; f = 1 MHz$ $T_{VJ} = 25 \,^{\circ}C$ C, junction capacitance pF E_{AS} non-repetitive avalanche energy $I_{AS} = A; L = 100 \,\mu H$ $T_{vJ} = 25 °C$ tbd mJ repetitive avalanche current $V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz A tbd I_{AR}

© 2006 IXYS all rights reserved

HiPerFRED


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number (Marking on product)

DPG 120 C 300QB

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviourAvalanche voltage rated for reliable
- operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

(UPS)

XYS

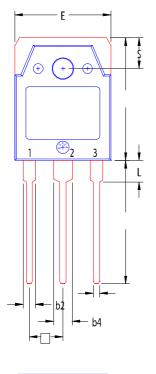
DPG 120 C 300QB

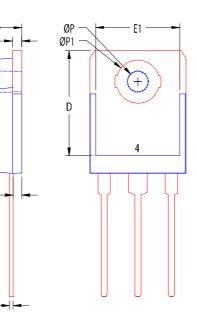
advanced

MILLIMETERS

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			70	Α	
R _{thCH}	thermal resistance case to heatsink			0.25		K/W	
M _D	mounting torque		0.8		1.2	Nm	
F _c	mounting force with clip		20		120	Ν	
T _{stg}	storage temperature		-55		150	°C	
Weight				5		g	

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.


A


А

С

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

CVM	INCHES		MILLIMETERS	
SYM	MIN	MAX	MIN	MAX
А	.185	.193	4.70	4.90
A1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
b	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
с	.022	.031	0.55	0.80
D	.780	.791	19.80	20.10
D1	.665	.6 77	16.90	17.20
Е	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
е	.215 BSC		5.45 BSC	
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
ØP	.126	.134	3.20	3.40
ØP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10

INCHES

All metal area are tin plated.

\bigcap	J
	

1 - GATE
2 - DRAIN (COLLECTOR)

3 - SOURCE (EMITTER) 4 - DRAIN (COLLECTOR)

0614