

Polysnap ${ }^{\circledR}$

With over 26,000 combinations Bulgin's Polysnap ${ }^{\text {® }}$ mains power inlet modules offer a very adaptable and flexible solution to panel design.

Polysnap ${ }^{\circledR}$ offer combinations of mains inlets and outlets, filtered inlets, switches, fuseholders, voltage selectors, indicators and circuit breakers mounted in either horizontal or vertical format bezels ready for quick snap-fit assembly. The compact design occupies the minimum of panel area and a single rectangular mounting hole, offering easy installation for this mains power entry module.

To complement Polysnap ${ }^{\circledR}$ the new Polyflange offers a flange fixing alternative for designers who prefer the security of screw fixing.

All types and variations are available through Bulgin's extensive distribution network.

Type	Page
BZV Series	$76-86$
BZH Series	$87-91$
BZM Series	92
BVA \& BVB Series	$93-94$
Filtered Bezel Options	$95-100$

Components used in Polysnap ${ }^{\circledR}$ and Polyflange Power Inlet Modules
Note：Components are Approved Individually（where applicable）．Please see individual component pages for full specifications．
IEC CONNECTORS，FUSEHOLDERS AND VOLTAGE SELECTORS

Type	Description	Rating	Approvals
DX0928	Neon Indicator	110 V or 250 V a．c．／d．c．working	
FX0359	$5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A．250V See Page 138	會게（SA）（1）＊＊＊ending
PF0011	C14 Power Inlet with Integral $5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A． 250 V a．c． See Page 54	會T（SP）（S）
PF0033	C14 Power Inlet with Integral twin $5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A． 250 V a．c． See Page 55	會T（SP）（¢）
PX0575	C14 Power Inlet，Cold condition	Max．rating 10A． 250 V a．c． See Page 50	會耳）（\＄1）（S）（H）
PX0595	C16 Power Inlet，Hot Condition	Max．rating 10A． 250 V a．c． See Page 56	
PX0695	Sheet F Power Outlet	Max．rating 10A．250V a．c． See Page 63	啨7（SH）（S）
PX0783	Sheet F Shuttered Power Outlet	Max．rating 10A． 250 V a．c． See Page 64	會耳（S¢）（S）
PX0598	C20 Power Inlet	Max．rating 16A， 250 V a．c． See Page 59	金耳（SA
VS0001	Voltage Selector marked 120／240V	Max．rating 6．3A．120／240V a．c． See Page 176	含（\＄1）

SWITCHES，INDICATORS AND CIRCUIT BREAKERS

OVERVIEW OF POLYSNAP MODULES

C14 IEC Fused Inlet - Vertical

VERTICAL MODULE ARRANGEMENT

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order

Type of Inlet / Outlet

Filtered or Non Filtered Inlet
Combination of Other Components

Single Fused C14 Power Inlet (cold condition),
6.3 or 2.8 mm tabs:
$01=$ PF0011/63
$02=$ PF001 1/28

Twin Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs:
$15=$ PF0033/63
16 = PF0033/28

Z0000 $=$ Non Filtered
Axxxx $=$ Standard
Bxxxx $=$ Medical
Cxxxx $=$ High Performance Standard
(Single Fuse Version only)

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 97-100.
E.g. BZVO1/A0620/01

Single Pole Switch:
01 = S.P. Switch

Single Pole Neon Switch:
$\mathbf{0 2}=$ S.P. Red Neon Switch
$08=$ S.P. Green Neon Switch
Neon Indicator:
$03=$ Red Neon Indicator

Single Pole High Inrush Switch:
46 = S.P. High Inrush Switch
Single Pole Switch Marked I/O:
69 = S.P. Switch (I/O)
Single Pole Neon Switch Marked (I/O):
71 = S.P. Red Neon Switch (I/O)
$74=$ S.P. Green Neon Switch (I/O)
Single Pole High Inrush Switch Marked (I/O):
98 = S.P. High Inrush Switch (I/O)

[^0]
C14 IEC Fused Inlet - Vertical

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Double Pole Switch or Indicator Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
Single Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{0 1}=\text { PF0011/63 } \\ & \mathbf{0 2}=\text { PF0011/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & 15=P F 0033 / 63 \\ & 16=\text { PF0033/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard Bxxxx $=$ Medical Cxxxx $=$ High Performance Standard (Single Fuse Version only) For Filtered inlet use 6th to 9th characters from filter ordering code see pages 97-100. E.g. BZV01/A0620/10	Neon Indicator: D3 $=$ Red Neon Indicator Double Pole Switch: $\mathbf{1 0}=$ D.P. Switch Double Pole Neon Switch: 11 = D.P. Red Neon Switch 12 = D.P. Green Neon Switch Double Pole High Inrush Switch: 13 = D.P. High Inrush Switch Double Pole Switch Marked I/O: $\mathbf{7 0}=$ D.P. Switch (I/O) Double Pole Neon Switch Marked (I/O): 76 = D.P. Red Neon Switch (I/O) 77 = D.P. Green Neon Switch (I/O) Double Pole High Inrush Switch Marked (I / O): $\mathbf{7 8}=$ D.P. High Inrush Switch (I/O) B1 = D.P. High Inrush Green Neon Switch (I/O)

[^1]
C14 and C16 IEC Inlet - Vertical

VERTICAL MODULE ARRANGEMENT

- Inlet with 2.8 mm or 6.3 mm tags
- Single Pole Switch or Neon Indicator Variations
- Filtered Inlet Option
- Options of I/O marked switches
- Non Fused

How to Order

Type of Inlet / Outlet

Filtered or Non Filtered Inlet
Combination of Other Components

C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs:
$\mathbf{0 3}=$ PX0575/63
$\mathbf{0 4}=$ PX0575/28

C16 Power Inlet (hot condition), 6.3 or 2.8 mm tabs:
$05=$ PX0595/63
$06=$ PX0595/28

Please note type 05 and 06 are not available in filtered version

Z0000 = Non Filtered
Axxxx $=$ Standard
$B x x x x=$ Medical

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 95-96.
E.g. BZV03/A0120/02

Single Pole Switch:
01 = S.P. Switch

Single Pole Neon Switch:
$\mathbf{0 2}=$ S.P. Red Neon Switch
$08=$ S.P. Green Neon Switch

Neon Indicator:
$\mathbf{0 3}$ = Red Neon Indicator

Single Pole High Inrush Switch:
46 = S.P. High Inrush Switch

Single Pole Switch Marked I/O:
69 = S.P. Switch (I/O)
Single Pole Neon Switch Marked (I/O):
71 = S.P. Red Neon Switch (I/O)
74 = S.P. Green Neon Switch (I/O)
Single Pole High Inrush Switch Marked (I/O):

98 = S.P. High Inrush Switch (I/O)

[^2]
C14 and C16 IEC Inlet with Circuit Breaker

Note: For technical details of individual components also see page 74

Time in Seconds
Trip Curves are Specified at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$

Capacity Correction Factors for Ambient Temperatures Current Rating 5 to 15A

Temperature ${ }^{\circ} \mathrm{C}$	-10	-20	-25	-30	-40	-50	-60
Correction Factor	.90	.95	1.00	1.10	1.32	1.61	2.15

Circuit Breaker Approvals:

C14 and C16 IEC Inlet - Vertical

VERTICAL MODULE ARRANGEMENI

- Inlet with 2.8 mm or 6.3 mm tags
- Double Pole Switch/ Fuseholder/Indicator/ Voltage Selectors/ Blanking Plate
- Filtered Inlet Option
- Options of I/O marked switches

Panel Thickness. $1.0,1.5,2.0,3.0 \mathrm{~mm}$.
BZVO3, BZVO4/*****/** A $=62.5$ With Filter 39.0 Without Fiter

How to Order BZV xx / xxxxx / xx

Type of Inlet / Outlet
Filtered or Non Filtered Inlet
Combination of Other Components

C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs:
$\mathbf{0 3}=\mathrm{PX} 0575 / 63$
$04=$ PX0575/28

C16 Power Inlet (hot condition), 6.3 or 2.8 mm tabs:
$05=P \times 0595 / 63$
06 = PX0595/28

Please note type 05 and 06 are not available in filtered version
$Z 0000=$ Non Filtered
Axxxx $=$ Standard
$B x x x x=$ Medical

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 95-96.
E.g. BZV03/A0120/07

Twin Fuseholder and Double Pole Switch:
$\mathbf{0 5}=2 \times$ FX0359 + D.P. Switch
Twin Fuseholder and Double Pole Neon Switch:
$06=2 \times$ FX0359 + D.P. Red Neon
Switch
$\mathbf{0 9}=2 \times$ FX0359 + D.P. Green Neon Switch
$19=2 \times$ FX0359 + D.P. Red Neon Switch 125V

Twin Fuseholder and Neon Indicator: $\mathbf{0 7}=2 \times$ FX0359 + Red Neon Indicator

Voltage Selector, Fuseholder and Double Pole Switch:
$15=1 \times$ VSOOO1 $+1 \times$ FX0359 + Double Pole switch

Voltage Selector, Fuseholder and Double Pole Neon Switch:
$\mathbf{1 6}=1 \times$ VS0001 $+1 \times$ FX0359 + D.P.
Red Neon Switch
$\mathbf{1 8}=1 \times$ VS0001 $+1 \times$ FX0359 + D.P.
Green Neon Switch
Voltage Selector, Fuseholder and Neon Indicator:
$\mathbf{1 7}=1 \times$ VS0001 $+1 \times$ FX0359 + Red Neon Indicator

Twin Fuseholder and Double Pole High Inrush Switch:
$\mathbf{2 0}=2 \times$ FX0359 + D.P. High Inrush Switch

Twin Fuseholder and Double Pole High Inrush Neon Switch:
$\mathbf{2 1}=2 \times$ FX0359 $+1 \times$ D.P. High Inrush Green Neon Switch
$\mathbf{2 2}=2 \times$ FX0359 + $1 \times$ D.P. High Inrush Red Neon Switch

Voltage Selector, Neon Indicator and Double Pole Switch
$\mathbf{2 5}=1 \times$ VS0001 $+1 \times$ DX0928/110V/Red + D.P. Switch
$\mathbf{2 6}=1 \times$ VS0001 $+1 \times$
DX0928/110V/Green + D.P. Switch
$27=1 \times$ VS0001 $+1 \times$
DX0928/250V/Red + D.P. Switch
$\mathbf{2 8}=1 \times$ VSOOO1 $+1 \times$
DX0928/250V/Green + D.P. Switch
Voltage Selector, Neon Indicator and Double Pole High Inrush Switch:
$29=1 \times V S 0001+1 \times$
DX0928/250V/Red + D.P. High Inrush Switch
$30=1 \times V S 0001+1 \times$ DX0928/250V/Green + D.P. High Inrush Switch

Fuseholder, Neon Indicator and Double Pole Switch
$31=1 \times$ FX0359 $+1 \times$
DX0928/110V/Red + D.P. Switch
$32=1 \times$ FX0359 $+1 \times$
DX0928/110V/Green + D.P. Switch
$33=1 \times$ FX0359 $+1 \times$
DX0928/250V/Red + D.P. Switch
$34=1 \times$ Fx0359 $+1 \times$
DX0928/250V/Green + D.P. Switch
Fuseholder, Neon Indicator and Double Pole High Inrush Switch:
$35=1 \times$ FX0359 $+1 \times$ DX0928/250V/Red + D.P. High Inrush Switch
$36=1 \times$ FX0359 $+1 \times$
DX0928/250V/Green + D.P. High Inrush Switch

Fuseholder, Blanking Plate and Double Pole High Inrush Neon Switch: $47=1 \times$ FX0359 $+1 \times$ Blanking Plate (Right) + D.P. High Inrush Green Neon Switch

Fuseholder, Blanking Plate and Double Pole Switch:
$48=1 \times$ FX0359 $+1 \times$ Blanking Plate (Right) + D.P. Switch

C14 and C16 IEC Inlet - Vertical

VERTICAL MODULE ARRANGEMENT

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs:	$\begin{aligned} & z 0000=\text { Non Filtered } \\ & \text { Axxxx = Standard } \end{aligned}$	Twin Fuseholder: $\mathbf{0 4}=2 \times \text { FX0359 }$
$\begin{aligned} & \mathbf{0 3}=P X 0575 / 63 \\ & \mathbf{0 4}=P X 0575 / 28 \end{aligned}$	Bxxxx $=$ Medical	Voltage Selector and Fuseholder:
C16 Power Inlet (hot condition), 6.3 or 2.8 mm tabs:		$\mathbf{1 4}=1 \times \text { V50001 }+1 \times \text { FX0359 }$
$\begin{aligned} & \mathbf{0 5}=\text { PX0595/63 } \\ & \mathbf{0 6}=\text { PX0595/28 } \end{aligned}$		Voltage selector and Neon: $\begin{aligned} & \mathbf{3 7}=1 \times \text { VS0001 + DX0928/110V/Red } \\ & \mathbf{3 8}=1 \times \text { VS0001 + DX0928/110V/Green } \\ & \mathbf{3 9}=1 \times \text { VS0001 + DX0928/250V/Red } \\ & \mathbf{4 0}=1 \times \text { VS0001 + DX0928/250V/Green } \end{aligned}$
Please note type 05 and 06 are not available in filtered version		Fuseholder and Neon:
	For Filtered inlet use 6th to 9th characters from filter ordering code see pages 95-96. E.g. BZV04/A0120/04	$\begin{aligned} & \mathbf{4 1}=1 \times \text { FX0359 + DX0928/110V/Red } \\ & \mathbf{4 2}=1 \times \text { FX0359 + DX0928/1 10V/Green } \\ & \mathbf{4 3}=1 \times \text { FX0359 + DX0928/250V/Red } \\ & \mathbf{4 4}=1 \times \text { FX0359 + DX0928/250V/Green } \end{aligned}$ Fuseholder and Blanking Plate: $45=1 \times \text { FX0359 + Blanking Plate }$ $\text { B2 }=1 \times \text { VS0001 + Blanking Plate }$

[^3]

How to Order	BZV xx / xxxxx / xx	
Type of Inlet	Filtered or Non Filtered Inlet	Combination of Other Components
C20 Power Inlet (cold condition), 4.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{4 9}=\text { PX0598/63 } \\ & \mathbf{5 0}=\text { PX0598/48 } \end{aligned}$	Z0000 $=$ Non Filtered	Single Pole Switch: 01 = S.P. Switch Single Pole Switch Marked (I/O): 69 = S.P. Switch (I/O) Single Pole Illuminated Switch: 02 = S.P. Illuminated Red 08 = S.P. Illuminated Green Single Pole Non-illuminated High Inrush Switch Marked I/O: 98 = S.P. High Inrush Switch (I/O) Single Pole Illuminated (Red or Green 250v Neon) Switch Marked I/O: 71 = S.P. Switch Illuminated Red (I/O) 74 = S.P. Switch Illuminated Green (I/O)

[^4]
C14 IEC Inlet/Sheet F IEC Outlet - Vertical

VERTICAL MODULE ARRANGEMENT

- Inlet/Outlet Combination
- 2.8 mm or 6.3 mm tags
- Filtered Inlet and Blanking Plate options
- Shuttered or Non-shuttered Outlet
- Fused

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
C14 Power Inlet (cold condition) and Sheet F Non-shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{0 9}=P X 0575 / 63+P X 0695 / 63 \\ & \mathbf{1 0}=P X 0575 / 28+P X 0695 / 28 \end{aligned}$ C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 7}=\text { PX0575/63 }+ \text { PX0783/63 } \\ & \mathbf{1 8}=\text { PX0575/28 }+ \text { PX0783/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard $B x x x x=$ Medical For Filtered inlet use 6th to 9th characters from filter ordering code see pages 95-96. E.g. BZV09/A0120/04	Twin Fuseholder: $04=2 \times \text { FX0359 }$ Voltage Selector and Fuseholder: $\mathbf{1 4}=1 \times V S 0001+1 \times \text { FX0359 }$ Voltage selector and Neon: $\begin{aligned} & \mathbf{3 7}=1 \times \text { VS0001 + DX0928/110V/Red } \\ & \mathbf{3 8}=1 \times \text { VS0001 + DX0928/110V/Green } \\ & \mathbf{3 9}=1 \times \text { VS0001 + DX0928/250V/Red } \\ & \mathbf{4 0}=1 \times \text { VS0001 }+ \text { DX0928/250V/Green } \end{aligned}$ Fuseholder and Neon: $\begin{aligned} & \mathbf{4 1}=1 \times \text { FX0359 + DX0928/110V/Red } \\ & \mathbf{4 2}=1 \times \text { FX0359 + DX0928/110V/Green } \\ & \mathbf{4 3}=1 \times \text { FX0359 + DX0928/250V/Red } \\ & \mathbf{4 4}=1 \times \text { FX0359 + DX0928/250V/Green } \end{aligned}$ Fuseholder and Blanking Plate: $\mathbf{4 5}=1 \times \text { FX0359 + Blanking Plate }$ $\text { B2 }=1 \times \text { VS0001 + Blanking Plate }$

[^5]
Sheet F IEC Outlet - Vertical

- Outlet with 2.8 mm or 6.3 mm tags
- Shuttered or Non-Shuttered
- Single Pole Switch or Neon Indicator
- I/O Marking Options

	BZV xx / xxxxx / xx	
Type of Outlet	Non Filtered Outlet	Combination of Other Components
Sheet F Power Outlet (non shuttered), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{4 5}=P \times 0695 / 63 \\ & \mathbf{4 6}=\text { PX0695/28 } \end{aligned}$ Sheet F Power Outlet (shuttered), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{4 7}=\text { PX0783/63 } \\ & \mathbf{4 8}=\text { PX0783/28 } \end{aligned}$	z0000 $=$ Non Filtered	Single Pole Switch: $01=$ S.P. Switch Single Pole Neon Switch: $02=$ S.P. Red Neon Switch $08=$ S.P. Green Neon Switch Neon Indicator: 03 = Red Neon Indicator Single Pole High Inrush Switch: 46 = S.P. High Inrush Switch Single Pole Switch Marked I/O: 69 = S.P. Switch (I/O) Single Pole Neon Switch Marked (I/O): 71 = S.P. Red Neon Switch (I/O) $\mathbf{7 4}=$ S.P. Green Neon Switch (I/O) Single Pole High Inrush Switch Marked (I/O): $98=$ S.P. High Inrush Switch (I/O)

[^6]
[^0]: Note: For technical details of individual components please see page 74

[^1]: Note: For technical details of individual components please see page 74

[^2]: Note: For technical details of individual components please see page 74

[^3]: Note: For technical details of individual components please see page 74

[^4]: Note: For technical details of individual components please see page 74

[^5]: Note: For technical details of individual components please see page 74

[^6]: Note: For technical details of individual components please see page 74

