
1 General Information ..... 7
1.1 Information about the Operating Instructions ..... 7
1.2 Explanation of symbols ..... 9
1.3 Limitation of Liability ..... 10
1.4 Copyright protection ..... 11
1.5 Guarantee conditions ..... 11
1.6 Customer Service ..... 11
2 Safety ..... 12
2.1 Intended Use (Proper Use) ..... 12
2.2 Assembly, connecting, programming ..... 13
2.3 Responsibilities of the machine/plant manufacturer and operator ..... 16
2.4 Staff-related requirements ..... 17
2.5 Special hazards ..... 18
2.6 Safety devices ..... 20
3 Setup and Operation ..... 21
3.1 Dimension Sheet / Multifunction Counter Installation ..... 22
3.2 Connecting the Multifunction Counter ..... 23
3.3 Display ..... 28

## Table of Contents

3.4 Keyboard functions ..... 30
3.5 Overview of Operating Elements ..... 33
3.6 Programming the Standard Function ..... 34
3.7 Programming the Function Codes ..... 36
3.8 Programming the Preset Modes ..... 37
3.9 Prescaler Programming ..... 39
3.10 Programming the (User) Times ..... 40
3.11 Output of ID Data ..... 42
4 General Description of Multifunctional Counter ..... 43
5 Pulse Counter ..... 50
5.1 Description of Pulse Counter ..... 50
5.2 Signal diagrams - counter input signals ..... 52
5.3 Signal diagrams - counter output signals ..... 55
5.4 Programming the counter function codes ..... 59
6 Tachometer ..... 74
6.1 Tachometer description ..... 74
6.2 Signal diagrams - tachometer ..... 76
6.3 Programming the tachometer function codes ..... 77
7 Timer ..... 87
7.1 Timer description ..... 87
7.2 Signal diagram - timer input signals ..... 90
7.3 Signal diagrams - timer output signals ..... 93
7.4 Programming the timer function codes ..... 93
8 Shift Counter ..... 110
8.1 Shift counter description ..... 110
8.2 Scroll between Total Sum and Partial Sums ..... 111
8.3 Signal diagrams - shift counter input signals ..... 112
8.4 Signal diagrams - shift counter output signals ..... 114
8.5 Programming the shift-counter function codes ..... 115
9 Batch Counter ..... 130
9.1 Batch counter description ..... 130
9.2 Signal diagrams - batch counter ..... 132
9.3 Programming the batch counter function codes ..... 133
10 Technical Data ..... 150
11 Transport, Packaging, Storage ..... 155

## Table of Contents

12 Maintenance and cleaning ..... 155
13 Malfunctions ..... 156
14 Spare Parts ..... 158
15 Dismantling and Disposal ..... 158
16 Ordering Information ..... 159
17 Accessories and spare parts ..... 160

## 1 General Information

### 1.1 Information about the Operating Instructions

These operating instructions provide important information about the handling of the multifunctional counter. To ensure safe operation it is vital that the safety information and instructions be strictly observed.
The multifunction counter has been designed for industrial use and for installation in machinery or industrial plants.
The manufacturer of the machine/plant in which the multifunctional counter is used has to ensure that the function of the counter is properly described in the Operating Instructions of the machine or plant, and that the description is in accordance with manufacturer's programming functions.

The manufacturer's safety rules shall be applicable.
In addition, the local regulations concerning the prevention of accidents and general safety information applicable to the machinery/plant shall be adhered to.
Before starting any work on the machine/plant, the operating instructions and in particular, the Safety chapter and the respective safety information must be fully read.
These operating instructions are an integral part of the product and must be maintained in the direct vicinity of the machine/plant and in a place that is readily accessible for the operating staff.

These operating instructions contain important information concerning the installation, connection and programming of the multifunction counter.

## General Information

Description of the programming sequence:

- Programming of the basic functions
- Programming of the function codes
- Programming of the user times
- Programming of the prescaler
- Programming of the presettings

Before starting to run the machine/plant is in operation, all functions that are not allowed to be changed by the operator have to be blocked.

The executed programming functions have to be documented.

## General Information

### 1.2 Explanation of symbols

The warnings in these operating instructions are designated by symbols. Signal words at the beginning of the warnings indicate the severity of a safety hazard.

These notes have to be observed by all means, and all actions have to be taken with utmost care so as to prevent any accidents or damage or personal injury.

## Danger!

This warning indicates a direct safety hazard, which may lead to serious injuries or even death if preventative action is not taken.

## Warning!

This warning indicates a possible safety hazard, which may lead to serious injuries or even death if preventative action is not taken.

## Caution!

This warning indicates a possible safety hazard, which may lead to minor damage or injuries if preventative action is not taken.

## General Information



## Note!

This symbol indicates a potentially hazardous situation, which may lead to damage to property or to the environment if preventative action is not taken.

O Tips and recommendations
This symbol is used to point out to useful tips and recommendations and information ensuring efficient and trouble-free operation.

### 1.3 Limitation of Liability

The information and notes contained in these operating instructions were gathered in accordance with the applicable standards and regulations, the state-of-the-art, as well our long-standing experience and know-how.

The manufacturer shall not assume any liability for damage caused by:

- Non-adherence to the operating instructions
- Improper use
- Employment of unskilled or untrained personnel
- Makeshift changes or manipulation
- Opening of the multifunction counter

As a result of special design versions, special ordering options or the latest technical developments, the actual

## General Information

scope of delivery may deviate from the scope described and illustrated here.

### 1.4 Copyright protection

The operating instructions must be treated confidentially and used exclusively by the personnel responsible for the setup, maintenance, repair and operation of the machine/plant. Disclosure of these operating instructions to any third parties shall not be permissible without the prior written consent of the manufacturer.

The data and information stated here, including text, drawings, images and other illustrations, are protected by copyrights and subject to industrial property rights. Any misuse of such information shall be subject to prosecution.

### 1.5 Guarantee conditions

Our guarantee conditions are available for download from our homepage at www.hengstler.com - DOWNLOAD General Terms \&t Delivery Terms.

### 1.6 Customer Service

Our customer service is available to provide technical information and assistance for our customers. Detailed information on your responsible contact partner is given on our homepage (www.hengstler.com) under Contact and How to find us.

## Safety

## 2 Safety

This section provides an overview of all the important safety-relevant aspects to ensure best possible protection of the operating personnel as well as safe and trouble-free operation. Non-adherence to the instructions given in this manual may result in considerable safety hazards.

### 2.1 Intended Use (Proper Use)

The multifunctional counter is exclusively designed and constructed for the intended use and purposes described here.

The multifunctional counter serves together with a corresponding sensor for the counting of piece numbers, lengths, flow rates, velocities and times, as well as for the controlling and monitoring of machinery and equipment by sending control signals.

## Warning! <br> Safety hazards due to improper use / misuse! <br> Using the multifunction counter for any purposes other than the ones described within the scope of intended use may cause hazardous situations.

Claims for damages resulting from any kind of misuse shall be expressly excluded.

### 2.2 Assembly, connection, programming

These multifunction counters are built and tested in accordance with IEC/EN 61010-1, Protection Class II - Safety Measures for Electronic Measuring Equipment. They have left the factory in a condition that is in compliance with all safety-relevant requirements. In order to maintain this condition and ensure operational safety, the User is requested to observe the safety notes and warnings given in these operating instructions!

## Danger! <br> Risk of safety hazards due to incorrect/faulty assembly and connection.

- The max. operating voltages must not be exceeded!
- $12-24 \mathrm{VDC}$ and 24VAC multifunction counters have to be operated at safety extra-low voltages (SELV) and under potential-compensated conditions in order to prevent hazardous shock currents.
- An external fuse has to be provided to protect the multifunction counter (see Chapter 10, Technical Data).
- Installation and assembly shall be carried out by skilled and trained electricians only.
- Do not connect the multifunction counter without making sure that it no longer carries any live voltages. Always separate it from the mains supply before connecting.
- Make sure that live terminals are properly protected against inadvertent contact.


## Safety

- To ensure proper protection of terminals against hand contact, make sure that the live conductors are properly connected to the terminals.
- The rules and regulations set forth by the local electricity providers have to be observed.
- Do not establish any connections with non-allocated (NC) terminals.
- Multifunction counters may only be operated in a properly installed condition.
- If safe operation seems to be impaired, make the multifunction counter inoperable and secure it against inadvertent operation.
- Scope of applications: industrial processes and controls. Overvoltage across the terminals must be limited to the values of overvoltage category II.
- The installation and wiring environment has considerable impact on the electromagnetic compatibility of the multifunction counter. Therefore, electromagnetic compatibility of the entire plant has to be ensured during the installation.
- In areas presenting the risk of ESD (electrostatic discharge), make sure to use ESD-protected plugs and switches during the installation.
- If the functions "prescaler input", "preset input" and "key reset" are not allowed to be used by the machine/ plant operator, access to these functions must be blocked for machine operators. Depending on the machine/plant design or concept, non-permissible input may impair the operational safety and function of the machine or plant.


## Danger!

The manufacturer of the machines / plants has to ensure, that no risks result from this.

- The machine/plant manufacturer shall be responsible for the preparation of operating instructions / plant description including the following:
o Description of functions according to the programming of the multifunction counter;
o Description of the settings to be adjusted by the machine/plant operator;
o Information concerning the occupational safety requirements and possible hazards arising from the operation of the machine/plant.


## Safety

### 2.3 Responsibilities of the machine/plant manufacturer and operator

Multifunctional counters are designed for installation in machines/plants. Therefore, the manufacturer and operator of the machine/plant are subject to the legal obligations concerning occupational safety and health.

Besides the safety notes given in these operating instructions, the relevant rules and regulations concerning safety and the prevention of accidents, and the applicable environmental requirements have to be met. In particular:

- The machine/plant manufacturer shall be obligated to ensure that all the requirements mentioned in section 2.2 be fulfilled during the assembly, connection and programming.
- The operator shall obtain all the required information about the applicable occupational safety rules. In addition, the operator shall be obligated to prepare a risk assessment of possible hazards that may arise due to the special working conditions at the place of installation of the machine/plant. This risk assessment shall be documented in the form of operating instructions for the machine/plant.
- Throughout the entire operating time of the machine/plant the operator shall be obligated to check if the operating instructions prepared are in accordance with the latest status of requirements and, if required, make the appropriate adjustments.
- The operator shall ensure that all staff members who are involved in the machine/plant operation have read and fully understood these instructions. Moreover, the operator shall be obligated to train the operating personnel at regular intervals and inform them about any potential hazards.
- The operator shall ensure that the operation and cleaning of the machine/plant is exclusively carried out by skilled and trained personnel.
- The operator shall ensure that all maintenance and repair work shall only be carried out by skilled and trained personnel.
2.4 Staff-related requirements


## Warning:

Danger of personal injuries if handled by insufficiently qualified staff! Improper handling may cause severe personal injuries and damage to property.

- Actions requiring special skills have to be carried out only by the personnel designated in the appropriate sections of these instructions.
- Keep unqualified personnel away from hazard areas.


## Safety

## The following staff qualification requirements have been defined for the various scopes of activities:

- Instructed personnel

These persons have been instructed by the operator with regard to the tasks assigned and the potential hazards caused by improper handling.

- Skilled personnel

Due to their educational and professional skills, know-how and experience, as well as due to their knowledge of the relevant regulations, these persons are capable of executing their assigned tasks and recognize potential hazards independently.

- Skilled and trained electricians

Due to their educational and professional skills, know-how and experience, and due to their knowledge of the relevant regulations in the field of electrical engineering, these persons are capable of executing electrical work and recognizing potential hazards independently.

### 2.5 Special hazards

This section indicates certain residual risks, which may arise as a result of the risk assessment.
The safety information and warnings given here and in the following chapters of these instructions have to be observed in order to reduce any health hazards and avoid hazardous situations.

## Electric current

Danger!
Lethal hazard of electric shock!
Any contact with hazardous live components presents a direct lethal hazard. Damages of the insulation or individual components present a potential lethal hazard.

- In the event of any damage to the insulation, immediately disconnect the voltage supply and initiate the appropriate repair work.
- Any work on the electrical plant has to be carried out by skilled and trained electricians only.
- Before commencing your work on the electrical system, disconnect it from the main supply and check that it no longer carries any live voltages.
- Prior to conducting any maintenance, cleaning or repair work, disconnect the mains supply and secure it against inadvertent switching on.
- Do not short-circuit or make fuses inoperable.


## Safety

### 2.6 Safety devices

## Warning! Lethal hazard by non-functional safety devices! <br> Safety devices are provided to ensure a maximum of operational safety.

The multifunction counter itself does not include any installed safety devices.
These safety devices have to be attached externally.

Protect the electrical supply of the multifunction counter by means of external fuses (see Chapter 10, Technical Data).

Whether or not additional safety devices (e.g. emergency-off buttons) have to be provided depends on the general design and construction of the machine or plant.
The machine/plant manufacturer shall be responsible for providing such additional safety devices in according with his own risk assessment.

3 Setup and Operation

| 1 | Display |
| :--- | :--- | :--- | :--- |
| 2 | Operating keys |
| 3 | Flat gasket |
| 4 | Bracket |
| 5 | Enclosure |
| 6 | Plug for DC or sensor supply; <br> Electronic inputs and outputs |
| 7 | Connection terminal AC supply <br> and relay contacts |
| 8 | Circuit diagram |

## 3 Setup and Operation

3.1 Dimension Sheet / Installation of Multifunction Counter


## 3 Setup and Operation

### 3.2 Connecting the Multifunction Counter

| 2772020 |  | 2772045 |  |
| :---: | :---: | :---: | :---: |
| 1 dc - supply ext. Fus | Rel | $1{ }_{\text {max }}$ Sensor ${ }^{\text {ma }}$ | Out Rel 1 |
| 2 ov |  | 2 ov |  |
| 3 Input A |  | 3 Input A | v 14 |
| 4 Input B |  | 4 Input B | Out Rel 213 |
|  | Out Rel 2 | 5 Input C |  |
| 5 Input C | 边 | 6 Application input/outp. | $\max 250 \mathrm{~V} 11-$ |
| 6 Application input/outp. | 11 ${ }^{\text {d }}$ | 7 out1_Tr, 12-24VDC/30mA | Suply 10- |
| 7 OUT1_Tr, 12-30VDC/50mA | nc 10 | 8 out2_Tr, 12-24VDC/30mA | $\begin{aligned} & \text { AC-Supply } \begin{array}{l} \approx \\ \text { extern. Fuse } 9 \approx \end{array} \end{aligned}$ |
| 8 out2_Tr, 12-30VDC/50mA | nc 9 |  | $\rightleftharpoons \triangle$ |

## 3 Setup and Operation

| 2772021 |  |
| :---: | :---: |
| 1 DC - SUPPLY ext. Fuse $\square$ | nc 16 |
| 2 ov ! | nc 15 |
| 3 Input A | Nc 14 |
| 4 Input B | Out Rel 213 |
| 5 Input C |  |
| 6 Application input/outp. | max 250V 11- |
| 7 out1_Tr, 12-30VDC/50mA | nc 10 |
| 8 out2_Tr, 12-30VDC/50mA | nc 9 |

VDC 1 relays / 2 transistors
VAC transformer 1 Relays / 2 transistors

| 2772034 |  |
| :---: | :---: |
| 1 Dc-supply ext. Fuse $\square$ | nc 16 |
| 2 ov | nc 15 |
| 3 Input A | nc 14 |
| 4 Input $B$ | nc 13 |
| 5 Input C | nc 12 |
| 6 Application inputoutp. | nc 11 |
| 7 out1_Tr, 12-30VDC/50mA | nc 10 |
| 8 out2_Tr, 12-30VDC/50mA | nc 9 |

VDC 2 transistors



VAC switching power supply 1 relay / 2 transistors

## 3 Setup and Operation



VAC switching power supply 2 transistors

O The plug has to be disconnected from the counter before the cables are fastened by means of screws or screw-type terminals.

4
It is not allowed to contact the encoder to a direct current line voltage without protective circuit for EMC. For cable lenths $>30 \mathrm{~m}$ a protective circuit is always necessary!

When programming the input level to TLL an additional protective circuit is necessary.

We recommend the installation in an metallic environment.

## 3 Setup and Operation

## Only valid for DC-Versions:

When switching on the device in PNP-Mode, a short signal is applied to inputs $A, B, C$ and the application input.
To suppress the pulse in TL-Mode each input has to be connected to a resistor of 10 kOhm against 0 V
When switching on the device a short signal is applied to the application output.
This pulse, if needed, is possible to suppress by connecting a resistor of $10 \mathrm{kOhm} / 0,225 \mathrm{~W}$ against 0 V to the ap-plication-output.

### 3.3 Display

After switching on, all segments and characters are illuminated for approx. 2 seconds; then the display changes over to the Display or Programming Mode.

The display is available in four different versions:
Reflective: black digits on a bright reflecting background
Positively transmissive: black digits on an illuminated background*
Negatively transmissive: white illuminated digits on a black background*
Negatively transmissive: red illuminated digits on a black background*

* Currently not available


## 3 Setup and Operation



In the Display mode:
-Counter reading
In the Programming mode:
-Function code, user time, preset value, prescaler

In the Display mode:

- Display selected with F15

In the Programming mode:
-Function Code selection

In the Display mode:
-Designation of display in 2 nd row
In the Programming mode:
-Preset/PSC (flashing)

## 3 Setup and Operation

| E | $\wedge$ | $\nabla$ | $\rangle$ |
| :---: | :---: | :---: | :---: |
| Enter - Key | UP - Key | DOWN - Key | SHIFT - Key |

## Programming

If pressed together with POWER ON (keep keys pressed and switch on the device)

| $E+\Omega$ | Selects standard functions |
| :---: | :---: |
| E + | Sets function codes |
| $E+>$ | Selects ID data <br> (Article code (ID No.), manufacturing date, serial number....) |
| + | Sets User Times |

During the Programming of Function Codes

| $\sim+\square$ | Display of function code <br> Switches between function code text and function code number |
| :--- | :--- |

## During Operation

| - + | Sets reset |
| :---: | :---: |
| $E+$ | Sets preset 0 |
| $E+$ | Sets preset 1 |
| $E+$ | Sets preset 2 |
| - + | Sets prescaler |

## 3 Setup and Operation

Additional function for shift and batch counters

D
Switches between total sum and partial sums and/or count value and totalizer or batch counter

Additional function for timers

| $\Delta$ | Timer start <br> (If enabled with function code F15) |
| :--- | :--- |
| $\boldsymbol{\nabla}$ | Timer stop <br> (If enabled with function code F15) |

## 3 Setup and Operation

### 3.5 Overview of Operating Elements



## 3 Setup and Operation

### 3.6 Programming the Standard Function

The device described here is a multifunctional counter, which can be programmed for a variety of functions, i.e. pulse counter, tachometer, timer, shift counter or batch counter functions. The first step is to set the standard function (the factory setting of the device is the "pulse counter" setting).

Now continue with the programming of the function codes (Chapters 5-9) or User Times (Chapter 3.10)

| Programming mode | Change function setting: | Save, return to counter operation |
| :---: | :---: | :---: |
| E + eres | press | press |
| Keep pressed and switch voltage on <br> simultaneously |  |  |


| Function code | Display Row 1 | Function | No. | Display Row 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fn | FMMEL | Setting of Standard Function | 0* | P我55E | Pulse counter |
|  |  |  | 1 | EREHMG | Tachometer |
|  |  |  | 2 | E! ${ }^{\text {GFE }}$ | Timer |
|  |  |  | 3 | 5H:FEL | Shift Counter |
|  |  |  | 4 | ロREEHE | Batch Counter |

## 3 Setup and Operation

### 3.7 Programming the Function Codes

The function codes (system parameters) are used to program the function and behavior of the inputs and outputs, as well as the behavior of the device in its adjusted basic mode. The detailed selection options are described in Chapters 5 to 9.

| Programming mode | Change function setting | Save and change to next <br> function code | Save and change to <br> counter operation |
| :---: | :---: | :---: | :---: |
| Keep pressed and switch <br> voltage on simultaneously | press | press | press |

## Change between Text Display and Numerical Display

In the function code Programming Mode, the first row shows the name of the function code in the form of text (7-segment display). The second row shows the selectable option in a text form, too. By simultaneously pressing the Up and Down buttons, the display in the first row changes to a numerical display; after pressing these buttons once again, the display in the second row also changes to a numerical display. Pressing these buttons for a third time reverts both rows to the text display again.

## 3 Setup and Operation

## Attention: With each change among text and numeric display, the currently activated function code will return to the factory setting and may have to be readjusted.

The factory setting is designated with an asterix *.

### 3.8 Programming the Preset Values

By simultaneously pressing the E + Up, E + Down or E + Shift key you can change to the Preset programming mode:

Use the shift key in the programming mode to change a setting position. The selected position will start to flash. Use the shift key again to move by one position to the right. Then use the UP or Down key to increment or decrement the position by 1.

Rule for the 6th position: The change from 9 to 0 or 0 to 9 is indicated by a changing prefix.
Use the E key to leave the programming mode and return to the display mode. Your entries will be saved.
On leaving the programming mode, the presets are tested for attainability and recalculated, if necessary, because not all the values may be attained at a prescaler value of $>1$. The presetting is then rounded to the next attainable value.

## 3 Setup and Operation

If no key is pressed for more than 16 seconds in the programming mode, the counter will automatically return to the display mode. In this case, however, no entries will be saved except the last value saved with the E-key.

Set the preset value to 0 by pressing Up and Down keys simultaneously.


## 3 Setup and Operation

### 3.9 Prescaler programming

By pressing the Up + Shift keys simultaneously you can change to the Prescaler Programming Mode.
In the Programming mode, the position to be changed is selected by means of the shift key. The selected position will start flashing. Use the shift key again to move by one position to the right. Then use the UP or Down key to increment or decrement the position by 1 . It is not possible to save a value of 00,0000 . In this case the system will save 01,0000 .

Use the E key to leave the programming mode and return to the display mode. Your entries will be saved.
On leaving the programming mode, all the presets are recalculated because not all the values may be attained with a prescaler value of $>1$. Therefore, the presets have to be checked and corrected as necessary after saving the prescaler.

If no key is pressed for more than 16 seconds in the programming mode, the counter will automatically return to the display mode. In this case, however, no entries will be saved except the last value saved with the E-key.

Press the Up and Down keys simultaneously to set the prescaler to 01,0000.

## 3 Setup and Operation

| Programming mode | select a position: <br> (starts flashing) | Set position | Save and return to display mode |
| :---: | :---: | :---: | :---: |
| $\triangle+\square$ | $>$ | ${ }^{\text {or }}$ | E |
| press | press | press | press |
| ( | set to 01,0000 | Fir | Set prescaler |

### 3.10 Programming the user times

For programming the signal time for monostable output signals, 9 fixed signal times between 0.02 s and 10 s are available. In addition, three different signal times between $0,01 \mathrm{~s}$ and $599,99 \mathrm{~s}$ can be set by the user. The outputs are deactivated if the setting is 0.00 s .

3 Setup and Operation


## 3 Setup and Operation

## 3．11 Output of ID data

This function is used to retrieve ID data，e．g．article numbers and various manufacturing data．

| Output mode | Change to the next output | Return to counter operation |
| :---: | :---: | :---: |
| Keep pressed and switch voltage on |  |  |
| simultaneously |  |  |$\quad$ press $\quad$ press


| Display row 1 | Display row 2 |
| :---: | :---: |
| RrEMr | Article number |
| 日回口日 | Manufacturing date |
| 马EF．M5 | Serial number |
| 与ヵち円5 | Software number |
| コロロIE！ | Software release |

HENGSTLER

## 4 General description of the multifunction counter

## 4 General description of the multifunction counter

The following description is applicable for all standard settings. Special descriptions can be found in the appropriate chapters of this manual.

| Factory setting <br> (Defaults) | Sets all the function codes to the factory settings, <br> i.e. all codes designated with *. |
| :--- | :--- |
| Prescaler (pulse mete-- <br> ring factor): | The "Prescaler" is a multiplier. Each input pulse is multiplied by the adjusted factor. The dis- <br> play shows integers only. After a reset the counter is completely reset to 0; this also inclu- <br> des the non-visible value of < 1. <br> At a prescaler of $>1$ not all the values are selectable. If invalid Preset values are selected, <br> the counter will round them up to the next possible value. <br> Example: PSC 5 cannot select (reach) Preset value 7. In this case, the counter automatically <br> changes the Preset value to 10). <br> If the Prescaler is changed, this may also affect the Preset values, which may have to be <br> changed accordingly. <br> Adjusting range 0,0001 to 99,9999 |

## 4 General description of the multifunction counter

|  | The Prescaler is used, for example, to convert counter pulses into meaningful units, to adapt the units of measurements (e.g. cm-pulses to inch-pulses), or to compensate for worn out measuring wheels. <br> Formula: PSC = Desired/nominal display / number of pulses <br> Example: Flowmeter 173 pulses per100 liters; display in liters $P S C=100 / 173=0,5780$ <br> Example: 1 pulse per cm ; display in inch $\mathrm{PSC}=1 / 2,54=0,3937$ <br> Attention: This is only valid for counters and tachometers. For timers please refer to the special Timer Description. |
| :---: | :---: |
| Display 2. row: | The display of the 2nd row can be programmed as follows: P 2, P 1, P 0, Prescaler, Batch counter, totalizer or partial sums (shift counter) |
| Counter and control inputs: | The counter is fitted with 3 counter and control inputs and, in addition, with an application input (see below). These inputs are assigned various counter or control functions by means of function code settings. |
| Input logic: | The input logic can be programmed to NPN or PNP, each at the 8 V -level or TTL level; see Technical Data for the switching threshold. |

## 4 General description of the multifunction counter

| Reset/Set: | Manual setting via keys (lockable) <br> Electronic setting via control input (and/or application input) <br> Automatic programming after reaching the main Preselection <br> Programmable Power-On Reset |
| :--- | :--- |
| Depending on the function code the counter is: <br> 1.) Reset: reset to 0 <br> P 2 is the main Preset (preselect) value <br> During unidirectional counting the counter will add up. <br> or <br> 2.) Set: reset to P 2 <br> Signal 2 at 0 <br> During unidirectional counting the counter will subtract. |  |
| For time counting, batch counting or shift counting, it is possible to reset partial sums or <br> the total sum, batch counter or 2nd totalizer individually or at the same time via <br> the application input. <br> Independently the counter can be reset to Preset value 0 via the application input (see <br> below). <br> Exception: Tachometers do not have a reset/set function |  |

## 4 General description of the multifunction counter

| Static/dynamic reset: | Static reset: <br> Dynamic reset: <br> Exception: Tachometers do not have a reset/set function <br> Reset via the active edge; thereafter, counter poperation is possible <br> independently of the pulse width of the reset pulse. |
| :--- | :--- |
| Teach input: | Using the Teach Input (application input) the counter status is imported in Preset 2. |
| Decimal Point: | The decimal point is only an optical reading assistence on the display and does not change <br> the value. For example, for a value of 1 pulse per cm, the setting 0,00 makes it easier to <br> read the value in m and cm. |
| Exception: This does not apply to tachometers and timers. <br> Please refer to the detailed Tachometer and Timer descriptions. |  |

## 4 General description of the multifunction counter

| Input damping <br> (Attenuation) | The inputs A and B are damped to 60 kHz. <br> The Application Input is damped to 6 kHz. <br> Following maximum input frequencies are not to be exceeded: <br> Phasediscriminator single evaluation: A and B each $30 \mathrm{kHz}(T \mathrm{LL} 15 \mathrm{kHz})$ <br> Phasediscriminator double evaluation: A and B each $30 \mathrm{kHz}(T \mathrm{LL} 15 \mathrm{kHz})$ <br> Phasediscriminator quadruple evaluation: A and B each $15 \mathrm{kHz}(T \mathrm{LL} 15 \mathrm{kHz})$ <br> Unidirectional counting and directional input: Input A $60 \mathrm{kHz}(T \mathrm{LL} 15 \mathrm{kHz})$ <br> Differential counting, summation (totalizing): Input A + B $60 \mathrm{kHz}(T T \mathrm{LL} 15 \mathrm{kHz})$ <br> In case the application input is used as an additional count input, the above mentioned in- <br> put frequencies have to be reduced by the frequency of the application input: |
| :--- | :--- |
| If mechanical contacts are triggered (i.e. relays, switches, Reed contacts, etc.), the input fre- <br> quency has to be damped (attenuated) to 30 Hz, so as to filter out bounce pulses. <br> If damping to 30 Hz is selected, all inputs can be used with 30 Hz. |  |
| To reach these values the amplitude thresholds are to be hold. <br> (See technical data - chapter 10) |  |

## 4 General description of the multifunction counter

| Signals: | P 1 and P 2 are available as relay changeover contacts and electronic output signals (PNP). <br> P 0 is available as an electronic output signal across the application output (PNP). <br> If a signal is active, this will be shown on the LCD display. <br> An additional programming function: the display flashes if one or all the Preset values are <br> active. <br> This is also valid for Preset 0 (if no output has been assigned). |
| :--- | :--- |
| Signalzeiten: | 1.) bistable: Cleared by electronic or manual reset. <br> $\mathrm{P} 0+\mathrm{P}$ 1 = bistable - additionally cleared by signal 2 <br> Attention: Signal 2 must not be bistable for automatic reset. <br> 2.) monostable: Up to 9 fixed signal times are available between 0,02s and 10s. In addition, <br> user times can be programmed between 0,01s to 599,99s. <br> 3.) Range signals: active as long as the counter reading is within the adjusted range. |
| Signals active | During normal operation the relay is energized if the signal is active. <br> This behavior can also be inverted (also applicable to the transistor outputs). <br> on/off |
| Application in- <br> put/output: | Depending on the standard function, up to 11 (eleven) functions can be assigned to the ap- <br> plication input/output. Note, however, that only one of these functions can be selected. <br> Further details are given in the Function Code Chapter. |

## 4 General description of the multifunction counter

| Application - Set <br> to preset 0 | Programs the application input to act as a Set Input. The counter is set to Preset 0, indepen- <br> dently of the reset via input C or the keyboard. <br> This function is not available for tachometers. |
| :--- | :--- |
| Application <br> keylock: | All keyboard functions can be locked (latched) individually <br> (Reset, P 0, P 1, P 2, Prescaler) <br> Lock mode: release after 10s, complete keylock or <br> keylock depending on keylock input (application input) |

O Our advice! After setting up the system, lock (latch) all the keyboard functions that are not allowed to be changed by the user.

## 5 Pulse counter

### 5.1 Description of the Pulse Counter

(Supplementing the General Description in Chapter 4)

| Counter mode | The following counter modes can be selected: Unidirectional counting, adding or subtracting; Unidirectional counting with directional input; Differential counting, summation (totalizing) or phase discriminator (quad) with single, double or quadruple evaluation. |
| :---: | :---: |
| Output signals mode of operation: | 1.) coincidence signal: The counter operates in the coincidence mode, i.e. output signals are activated after reaching the Preset value for the programmed period of time. <br> 2.) Trail: $P 2$ and $P 0$ are under coincidence operation; they operate as described in item $A$. $P 1$ is the trail. $P 1$ is not absolute to 0 , but relative to $P 2$. <br> If the setting is $\mathrm{F} 8=1$, the following will apply: <br> Signal 1 is returned at P $2-\mathrm{P} 1$ <br> Example: P $2=1000, P 1=200$, Signal 1 at 800 ; <br> If $P 1$ is negative: $P 2=1000, P 1=(-200)$, Signal 1 at 1200 <br> If the setting is $\mathrm{F} 8=2$, the following will be applicable: <br> Signal 1 is returned at $\mathrm{P} 2+$ und - P 1 <br> (Example: P $2=1000, P 1=200$, Signal 1 at 800 or/and 1200) <br> 3.) range signal: VW 1 and 2 are range signals: <br> Signal 1 is active at a counter reading $<\mathrm{P} 1$ and <br> Signal 2 is active at a counter reading $>P 2$ |


| Intermediate cut: | Depending on the application it may become necessary to isolate the main signal during the <br> resen, e.g. when the first material lengths or certain lengths showing material defects have <br> to be cut on length-cutting systems. |
| :--- | :--- |
| Additional totalizer <br> (summation counter) | The additional totalizer sums up all values, even if the main counter is continually reset. The <br> shift key can be used to switch between the counter reading and the total sum. The totali- <br> zer can only be reset manually. <br> To do this, select the total sum from the first row; then press the reset keys. |
| Prescaler Output <br> PSC-out: | The prescaler output is an application output. <br> With each increase of the counter reading the number of output pulses corresponds to the <br> respective number of increments. <br> The pulse length of the prescaler output corresponds to a frequency of 500 Hz. <br> When using the prescaler output the max. count frequency is: <br> F max = 500 / PSC. <br> So it is possible that the maximum input frequency can not be reached. |
| Application counter <br> input add / sub | The application input may be assigned to the Count Up or Count Down function. <br> This is a counter input, which is available in addition to the counter mode adjusted with F1. |
| Application <br> Latch/Reset | Latch/Reset is an application input. If the counter is reset via the application input, the <br> counter reading is held constant. The counter continues to remain fully functional and ope- <br> rates in the background mode. During the next reset the current (updated) value will be <br> shown on the display. |

## 5 Pulse counter

### 5.2 Signal diagrams input signals (PNP-Logic)

Unidirectional counting (F1 = C G r) $=0$


Directional input(F1=Cdr)=1
Input A
Counter input
Input B
Directional input
Input C
Reset
Counter reading


## 5 Pulse counter

Differential input (F1=ASr)=3


Summation (totalizer) input (F1=A A r) $=5$


## 5 Pulse counter



## 5 Pulse counter

### 5.3 Signal diagrams - Output signals

Output signals monostable
Coincidence signals P 0 (F10), P 1 (F11), P 2 (F12) monostable


## 5 Pulse counter

Output signals bistable
Coincidence signal time P 0 (F10) monostable P 1 (F11), P 2 (F12) bistable


Trail Preset
P 0 (F10) Coincidence signal monostable, P 1 (F8+F11) trail signal, symmetrical,
P 2 (F12) Coincidence signal monostable


## 5 Pulse counter

## Range signals

P 0 (F10) Coincidence signal monostable P 1 + P 2 range signal


## 5 Pulse counter

### 5.4 Programming the counter function codes

| Programming modeE + | Change function setting | Save and change to next function | Return to display mode |
| :---: | :---: | :---: | :---: |
|  | or |  | E |
| Keep pressed and simultaneously turn Voltage On | press | press | press |
| Alternative display of function codes |  | The function codes ar By pressing both keys the numerical display keys once again the n be displayed in additi | d as text in row 1. eously you can change to 35). After pressing these the selectable options will etting will be stored. |

## 5 Pulse counter

| Function code | Display Row 1 | Function | No． | Display <br> Row 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | FEL5EL | Factory Setting （Defaults） | 0＊ | 日回日吅 | No Function |  |  |
|  |  |  | 1 | 日GロコE5 | All Function the values $m$ | s are set to with＊ |  |
| F1 | とヵMnt | Zählbe－ triebsart | $0 *$ | $r \Gamma$ | Input A | Input B | Input C |
|  |  |  |  |  | Count．inpt． | Gate | Reset |
|  |  |  | 1 | Ear | Count．inpt． | Direction． Input | Reset |
|  |  |  | 2 | Ed5 | Count．inpt． | Direction． Input | Gate |
|  |  |  | 3 | A 51 | Adding | Subtracting | Reset |
|  |  |  | 4 | A55 | Adding | Subtracting | Gate |

## 5 Pulse counter



## 5 Pulse counter

## 3 PMP＿L PNPTLL－Level

| F4 | in RtE | Input－ damping （Attenu－ ation） | 0 | LaFrg | 30 Hz damping（e．g．for mechanical contacts） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1＊ | $H_{1}$ FrG | F max．（see chapter 4 and 10） |
| F5 | F5月0』 | Set／Re－ set－Mode | $0^{*}$ | rE5 | Reset to 0 |
|  |  |  | 1 | RrE5 | Automatic reset to 0 after reaching Preset 2 |
|  |  |  | 2 | 5ELPコ | Set to Preset 2 |
|  |  |  | 3 | RSEEP2 | Automatic selection of Preset 2 after reaching 0 |
| F6 | FESEL | dynam．／ <br> static <br> Reset | $0^{*}$ | 5LRE | Static reset（reset as long as the signal is applied） |

## 5 Pulse counter



## 5 Pulse counter

| 2 | 0.3 | 0,025 |
| :---: | :---: | :---: |
| 3 | 8.85 | $0,05 \mathrm{~s}$ |
| $4^{*}$ | 0.10 | 0,10 s |
| 5 | 0.20 | 0,20 s |
| 6 | 8.50 | 0,50 s |
| 7 | 8日 100 | 1,00 s |
| 8 | 200 | $2,00 \mathrm{~s}$ |
| 9 | 5.0 | 5,00 s |
| 10 | 20.00 | 10,00 |

## 5 Pulse counter



## 5 Pulse counter



## 5 Pulse counter

| 1 | 6）5ER | Bistable；Reset <br> Cannot be used in conjunction with automatic Reset |
| :---: | :---: | :---: |
| 2 | 日日日ロロコ | 0，02 s |
| 3 | －6．7．ロ5 | 0，05 s |
| 4＊ | 昍马吅 | 0，10 s |
| 5 | 日日日ココロ | 0，20 s |
| 6 | 8．68．5］ | 0，50 s |
| 7 | 日明 10\％ | 1，00 s |
| 8 | 日日日 $2.0 \square$ | 2，00 s |
| 9 | 日日65．80 | 5，00 s |

## 5 Pulse counter

|  |  |  | 10 | 日㕲凫 $10,00 \mathrm{~s}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 11 | U5E5（ User setting 1 （0－599，99 s） |
|  |  |  | 12 | H5ET ב User setting 2 （0－599，99 s） |
|  |  |  | 13 | H5ET． 3 User setting 3 （0－599，99 s） |
| F13 | aPant | Decimal point | 0＊ | 日明每 No decimal point |
|  |  |  | 1 | 日日大日凫 1 decimal place |
|  |  |  | 2 | 日日大马，${ }^{\text {g }} 2$ decimal places |
|  |  |  | 3 | 6．8．00\％ 3 decimal places |
|  |  |  | 4 | 2．000\％ 4 decimal places |

## 5 Pulse counter

| F14 | FinSH | Display flashes | 0＊ | MロF！5H | No flashing |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 日回吅 | Flashes as long as P0 is active |
|  |  |  | 2 | 回日吅 | Flashes as long as P1 is active |
|  |  |  | 3 | 日回日コ | Flashes as long as P2 is active |
|  |  |  | 4 | Pワ－1－コ | Flashes as long as one P is active |
| F15 | コ．L，пE | Display in 2nd row | 0 | 日回日ワ | Preset 0 |
|  |  |  | 1 | 回口 | Preset 1 |
|  |  |  | 2＊ | 日日日日ロ | Preset 2 |
|  |  |  | 3 | 日日ロ55 | Prescaler |

5 Pulse counter

|  |  |  | 4 | 日田吅 | Totalizer |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F16 | GUETES | Output at Reset（In－ | 0＊ | 日日日可口 | Do not activate Preset 2 during Reset |
|  |  | term． <br> Cut | 1 | AELロコ | Activate Preset 2 during Reset |
| F17 | PMMSE5 | er | 0＊ | Mロ～E5 | Restore counter value |
|  |  |  | 1 | 日日GE5 | Reset at Power On |
| F18 |  | Output signal | 0 | 日日ロヒ5 | Restart signal time after power fail $\qquad$ output switches |
|  |  | Memory | $1^{*}$ | 日日日可口 | Do not restart signal time after power fail |
| F19 | R日GLロヒ | Addtl． | 0 | 日日G凫 | Enabled |
|  |  | Totaliz | $1^{*}$ | 日回吅 | Disabled |

## 5 Pulse counter

F22

Input/
Output 1 PMロ日品 Output Preset 0
2 』r~アロL Directional output
3* 「nL M口 Counter input-adding
4 「ாLロா Counter input - subtracting
5 FE5EL日 Reset input
6 5月LE日G Gate input
7 Lロロ日日日. Keylock input
8 Hald Hold input (display lock)

## 5 Pulse counter

|  |  |  | 9 | LEREHG | Teach input （count value becomes P 2） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 10 | 5EL日日G | Set input（Set to Preset 0） |
|  |  |  | 11 | LRETES | Latch and Reset <br> （Save display at Reset） |
| F30 | FESLロE | Lock Reset key | 0＊ | ロாடロ | Enable keyboard reset |
|  |  |  | 1 | 日日日Lロロ | Keyboard reset locked／delayed |
| F31 | Prロロロ |  | 0＊ | ロロடロロ | P 0 Setting enabled |
|  |  | Preset 0 | 1 | 日吅吅 | P 0 Setting locked／delayed |
| F32 | P1保 | Lock <br> Preset 1 | 0＊ | ロாடロロ | P 1 Setting enabled |

## 5 Pulse counter

|  |  |  | 1 | 日日日吅 | P 1 Setting locked／delayed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F33 | ロコロロロ | Lock | 0＊ | ロாடロ | P 2 Setting enabled |
|  |  | Preset 2 | 1 | 日日员吅 | P 2 Setting locked／delayed |
| F34 | P5¢LロE | Lock | 0＊ | 唯的 | PSC setting enabled |
|  |  | Prescaler setting | 1 | 日回吅 | PSC Setting locked／delayed |
| F35 | FLロロ日！ | Lock <br> Mode | 0＊ | 17 5E5 | 10 seconds delay |
|  |  |  | 1 | 园吅 | Completely locked |
|  |  |  | 2 | 1ヵP吅 | Lock depends on keylock input |

## 6 Tachometer

## 6 Tachometer

### 6.1 Tachometer Description

(Supplementing the General Description given in Chapter 4)

| Operation: | A tachometer measures the period (PNP: time from one rising edge to the next one); NPN: <br> time period from a falling edge to the next one), and converts and displays this time in 1/ <br> sec or 1/min. |
| :--- | :--- |
| Tachometer <br> Mode of Opera- <br> tion: | The following modes of tachometer operation can be selected: <br> Unidirectional counting; <br> Unidirectional counting with directional input; <br> Differential counting, summation (totalizing); <br> Phase discrimination (quad) with single, double or quadruple evaluation; <br> Indication of ratio A/B and <br> Indication of percentage (A-B)/A in \% |
| Decimal point | Tachometer mode of operation 0-4 (function code F1) <br> The decimal point only serves for better legibility and does not change the value. <br> Tachometer mode of operation 5 + 6 (function code F1) |
| The decimal point is included in the calculation and increases the resolution. |  |


| Output signals |  |
| :--- | :--- |
| Mode of opera- |  |
| tion: | The tachometer uses the following limit values: <br> P 1 and 2 are limit (range) signals <br> Signal 1 is active at the displayed value of $<\mathrm{P} 1$ and <br> Signal 2 is active at the displayed value of $>\mathrm{P} 2$ <br> Signal 0 is active at the displayed value of $>\mathrm{P} 0$; (application output) |
| Display unit: | Programmable: $1 / \mathrm{sec}$ or $1 / \mathrm{min}$ <br> Using the setting $1 / \mathrm{min}$ and prescaler 60 the display will show $1 /$ hour. |
| Min. input fre- <br> quency: | Programmable 1 Hz or 0.1 Hz. <br> If two edges do not occur within 1 s or respectively, 10 s, <br> a value of 0 will be displayed. |
| Startup <br> suppression: | Programmable Yes/No <br> During the startup the lower limit signal is suppressed until the lower limit value is excee- <br> ded for the first time. <br> The startup suppression will become active again, if the minimum frequency is fallen below. |

## 6 Tachometer

### 6.2 Signal diagram - Output signals



## 6 Tachometer

### 6.3 Programming the tachometer function codes

| Programming mode | Change function setting | Save and change to next function | Return to display mode |
| :---: | :---: | :---: | :---: |
| $E+$ |  | $>$ | E |
| Keep pressed and simultaneously turn Voltage On | press | press | press |
| Alternative display of Function code: | $+$ | The function codes ar By pressing both keys the numerical display keys once again the n be displayed in additi | ed as text in row 1. eously you can change to 35). After pressing these the selectable options will etting will be stored. |

## 6 Tachometer

| Funktion code | Display Row 1 | Function | No． | Display Row 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | FEL5EL | Factory Setting （Defaults） | 0＊ | 日回日吅 | No function |  |  |
|  |  |  | 1 | G日GE5 | All function codes are set to the values marked with＊ |  |  |
| F1 | ᄃ马MML | Tacho mode of operation |  |  | Input A | Input B | Input C |
|  |  |  | 0＊ | ［ 5H | Counter input | Gate | Hold（Display memory） |
|  |  |  | 1 | ［dH | Count input | Direct．input | Hold（Display memory） |
|  |  |  | 2 | H5 | Adding | subtracting | Hold（Display memory） |
|  |  |  | 3 | R $\boldsymbol{H}$ | Adding | Adding | Hold（Display memory） |



## 6 Tachometer

|  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |



## 6 Tachometer



1 日日回 Flashes as long as P 0 active

2 （

3
ロコ Flashes as long as P 2 active
$4 \quad ロ \square-1-\beth \quad$ Flashes if one preset is active

| F15 | ב． | Display in 2nd row | 0 | 目日日号 | Preset 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 回口ロ！ | Preset 1 |
|  |  |  | 2＊ | 日明ロコ | Preset 2 |
|  |  |  | 3 | 日日日可 | Prescaler |

## 6 Tachometer

| F22 | APL MR | Applica－ tion Input／ Output | 0 $\cdots$ 1 |  | Output Preset 0 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Directional output |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $2^{*}$ | ［日吅兵 | Count input adding，or 2nd count input A |
|  |  |  | 3 | 「日吅 | Count input subtracting，or 2nd counter input B |
|  |  |  | 4 | GREE | Gate Input |
|  |  |  | 5 | HaLd | Hold－Input（display memory） |
|  |  |  | 6 | EEREH | Teach Input （count value becomes P 2） |
|  |  |  | 7 | Lac日日日 | Keylock－Input |


| F31 | ロпロ吅 | Lock Pre－ set 0 Set－ ting | $0^{*}$ $1$ | ロாடロロ | POSetting enabled <br> PO Setting locked／delayed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F32 | ロ！日ロロ | Lock Pre－ set 1 Set－ ting | $\begin{gathered} 0^{*} \\ \ldots \\ 1 \end{gathered}$ | uாடロ | P 1 Setting enabled <br> P 1 Setting locked／delayed |
| F33 | ロコロイロ | Lock Pre－ set 2 Set－ ting | $0^{*}$ $1$ | unlロロ Lロロ | P 2 Setting enabled <br> P 2 Setting locked／delayed |
| F34 | P5ELロE | Lock <br> Prescaler <br> Setting | $0 *$ $\ldots$ 1 | ロாடロロ <br> LaE | PSC Setting enabled <br> PSC Setting locked／delayed |

## 6 Tachometer

F35 LLabRL $\begin{aligned} & \text { Lock } \\ & \text { Mode }\end{aligned} 0^{*}$ TR 5E[ 10 seconds delay

1 Lロロ ${ }^{1}$ - Completely locked

2 inPlar Lock mode depends on Keylock Input

## 7 Timer

### 7.1 Timer Description

(Supplementing the General Description in Chapter 4)

| Function: | The timer counts seconds, minutes or hours. <br> Depending on the resolution (see below) the smallest units to be recorded are 0,1 ms. <br> Combined with the prescaler (see below), quantities can be measured as a function of time. |
| :--- | :--- |
| Time formats: | 4 time formats are available: <br> Seconds, minutes, hours and HH:MM:SS |
| Resolution: | By shifting the decimal place, a resolution of up to 4 decimal places can be programmed; <br> the smallest resolution is 0,1 ms. |
| The time format "seconds with four decimal places" shows 0.1 milliseconds. <br> The time format "seconds with three decimal places" shows milliseconds. <br> The time format "minutes with two decimal places" shows $1 / 100$ minutes. |  |

## 7 Timer

| Prescaler: | During the timer operation the prescaler has to be disabled or set to 01,0000. <br> The prescaler can be used to record quantities, provided that the quantity per time unit is <br> know. <br> Example: A volume of 3 liters per second is supplied. <br> Settings: Time format "seconds", prescaler 3,0000 <br> Display Supplied volume in liters as a function of time. <br> The prescaler cannot be used with the time format HH:MM:SS <br> as it is not active (effective) in this format. |
| :--- | :--- |
| Timer mode of <br> operation: | The following modes of timer operation can be selected: <br> Cumulative measurement following the pulse-width measuring principle (Cumulative <br> measurement as long as input A is active) <br> Cumulative measurement following the cycle-duration principle <br> (Cumulative measurement from rising edge Input A to falling edge of Input A) <br> Cumulative measurement A=Run, B=Stop (cumulative measurement from rising edge In- <br> put A to rising edge Innut B) <br> Single-pulse measurement following the pulse-width measurement principle (Measure <br> as long as Input A is active) <br> Single-pulse measurement following the cycle-duration principle (Measurement from ri- <br> sing edge Input A to rising edge of Input A) <br> Single-pulse measurement A=Run, B=Stop (Cumulative measurement from rising edge <br> Input A to rising edge Input B) |
| Manual Start / Stop <br> via keyboard: | The Start / Stop function can be programmed via the keyboard. <br> Start: Press the UP button for 0.5s <br> Stop: Press the DowN button. |


| Output signals Function: | A coincidence signal: The timer operates in the "coincidence" mode, i.e. the output signals are enabled for the programmed period of time after reaching the selected preset value <br> B trail signal: P 2 and P 0 operate in the "coincidence" mode, i.e. the output signals are enabled for the programmed period of time when reaching the selected preset value. P 1 is a trail preset and not absolute to 0 , but relative to P 2 . <br> If the setting is $\mathrm{F} 8=1$, the following will apply: <br> Signal 1 is returned at $\mathrm{P} 2-\mathrm{P} 1$ <br> Example: P2=1000, P 1=200, Signal 1 at 800; <br> If P1 is negative: P $2=1000, P 1=(-200)$, Signal 1 at 1200 <br> If the setting is $\mathrm{F} 8=2$, the following will be applicable: <br> Signal 1 is returned at $P 2+$ und $-P 1$ <br> (Example: P $2=1000$, P $1=200$, Signal 1 at 800 or/and 1200) <br> C range signal: P 1 and 2 are range signals: <br> Signal 1 is active at timer reading $<\mathrm{P} 1$ and <br> Signal 2 is active at timer reading $>\mathrm{P} 2$ <br> D batch mode: The timer can also be programmed to act as a batch counter. <br> In this case, P $2=$ main preset value; P $1=$ Batch preset. <br> In the Batch mode of operation, only positive entries are possible for P1; <br> negative entries will be stored as positive values. <br> This mode is ideal to default a process time and the number of process sequences (runs). |
| :---: | :---: |
| Additional totalizer | The additional totalizer is used to sum up all the times (even after repeated resetting of the main counter). The totalizer is reset separately. |

## 7 Timer

### 7.2.1 Signal Diagrams - Input signals

$$
\begin{array}{ll}
\text { F7 }=0 & \begin{array}{l}
\text { Cumulative Measurement acc. to } \\
\text { pulse-width measuring principle }
\end{array}
\end{array}
$$



F7 $=3$
Single-pulse Measurement acc. to pulse-width measuring principle


ト7 = $0 \quad$ Cumulative measurement acc. to cycle-duration measuring principle

$$
\vdash 7=0
$$

Cumulative measurement acc. to cycle-duration measuring principle



### 7.2.2 Signal Diagrams - Output signals

The output signals of the timer can be derived from the pulse counter (see 5.3) or, respectively, batch counter (see 9.2) functions.

### 7.3 Programming the Timer Function Codes

| Programming mode | Change function setting | Save and change to next function | Return to display mode |
| :---: | :---: | :---: | :---: |
| $E+$ | oder | $>$ | E |
| Keep pressed and simultaneously turn Voltage On | press | press | press |
| Alternative display of function codes |  | The function codes ar By pressing both keys the numerical display keys once again the num be displayed in addition | d as text in row 1. eously you can change to 35). After pressing these the selectable options will tting will be stored. |

## 7 Timer

| Function code | Display Row 1 | Function | No． | Display <br> Row 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | FEL5EL | Factory Setting （Defaults） | 0＊ | 日吅吅 | No function |
|  |  |  | 1 | 日GUE5 | All function codes are set to the values marked with＊ |
| F1 |  | Time unit | 0＊ | 5EEロロは | Seconds |
|  |  |  | 1 | M何E | Minutes |
|  |  |  | 2 | Haロr5 | Hours |
|  |  |  | 3 | ННПП55 | HH：MM：SS |
| F2 | FE5MLG | Resolution | 0＊ | 日昍日 | No decimal point |
| HENGSTLER |  |  |  | 94 |  |

## 7 Timer

| F4 | in RLt | Input （Attenuat） | 0 | LロFrワ | 30 Hz damping（attenuation） （e．g．for mechanical contacts） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1^{*}$ | $H_{1} \mathrm{FrG}$ | F max．（see chapter 4 and 10） |
| F5 | 「5月ad | Set／Re－ <br> set－Mode | $0^{*}$ | －E5 | Reset to 0 |
|  |  |  | 1 | RTE5 | Automatic reset to 0 after reaching Preset value 2 |
|  |  |  | 2 | 5ELGE | Set to Preset 2 |
|  |  |  | 3 | R5ELPコ | Automatically sets to Preset 2 after reaching 0 ． |
| F6 | FESEL | dynam／ <br> static <br> Reset | 0＊ | 5tRt | Static Reset（as long as the signal is applied） |
|  |  |  | 1 | ロリカ | Dynamic Reset（ready for operation，even if reset signal has been applied for a longer time） |


| F7 | EIMETG | TimerMode of Operation | 0 |  | Cumulative measurement - pulse-width (counts as long as Input A is active) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1* | [HPE5 | Cumulative measurement - cycle duration (counts from rising edge of start signal to rising edge of stop signal). |
|  |  |  | 2 | [日F65 | Cumulative measurement - $A=\text { Run } B=\text { Stop }$ <br> (counts from rising edge of start signal to rising edge of stop signal). |
|  |  |  | 3 | 5, P91 | Single-pulse measurement - pulse-width (counts as long as Input A is active) |
|  |  |  | 4 | 5, ロEF | Single-pulse measurement - cycle duration (counts from rising edge of start signal to rising edge of stop signal). |
|  |  |  | 5 | 5, 5-5 | Single-pulse measurement $-A=$ Run $B=$ Stop (counts from rising edge of start signal to rising edge of stop signal) |
| F8 | PRES: | Mode Preset 1 | 0* | PrES | P 1 normal preset; absolute to counter reading (coincidence signal) |

## 7 Timer

1 ErR！$\quad P 1$ is a trail preset with prefix（relative to $P 2$ ）

2 L－RI：5 $\begin{aligned} & \mathrm{P} 1 \text { is a symmetric trail }\end{aligned}$ （relative to $P$ 2）

3 －RMEE $\quad P 1$ and $P 2$ are range signals
（Sign．1＜P1，Sign．2＞P2）

| F9 | 毋ut5i5 | Output signal | 0＊ | AEt $\quad$ п | Active On |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | REEMFF | Active Off |
| F10 | 51514 | Signal time P 0 | 0 | －5月6！ | Disabled／No output signal |
|  |  |  | 1 | ロ！¢ ¢ | Bistable，reset with Preset 2 or Reset |
|  |  |  | 2 |  | 0，02 s |

3 日月 $0.550,05 \mathrm{~s}$
$4^{*}$ 日明 8． 10 0，10s
5 ..... 0．2．0，20 s
6

$\square$
0．50 0，50s7 日明时 1,005
8

$\square$
2．0．0 2，00 s
9
日月 5．0．5，00s
10
日明昭 $10,00 \mathrm{~s}$

## 7 Timer

11 U5E「 1 User setting 1 （0－599，99 s）

12 M5E「 User setting 2 （0－599，99 s）

13 U5E「日 User setting 3 （0－599，99 s）

| F11 | 515 E： $\begin{aligned} & \text { Signal } \\ & \text { time P } 1\end{aligned}$ | 0 | d．5月L | Disabled／no output signal |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 口）5RAb | Bistable，reset with Preset 2 or Reset |
|  |  | 2 | 日日日吅 | 0，02 s |
|  |  | 3 | 86．8．55 | 0，05 s |
|  |  | $4^{*}$ | 日日号10 | 0，10 s |


| 5 | 日日G马， | 0，20 s |
| :---: | :---: | :---: |
| 6 | 日明5\％ | 0，50 s |
| 7 | 日日日 1．7n | 1，00 s |
| 8 | 日回卫口 | 2，00 s |
| 9 | В日凫号 | 5，00 s |
| 10 | 日日 19\％7 | 10，00 s |
| 11 | H5ETGi | User setting 1 （0－599，99 s） |
| 12 | 15EF日コ | User setting 2 （0－599，99 s） |

## 7 Timer

13 ப5E5． 3 User setting 3 （ 0 －599，99 s）

| F12 | 515Gコ | Signal time P 2 | 0 | －5月6！ | Disabled／No output signal |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | ロ！5ERb | Bistable；Reset function cannot be used in con－ nection with automatic Reset |
|  |  |  | 2 | 日日日凸コ | 0，02 s |
|  |  |  | 3 | 日日日凸ム5 | 0，05 s |
|  |  |  | 4＊ | 日明明 | 0，10 s |
|  |  |  | 5 | 日日ロロロ | 0，20 s |
|  |  |  | 6 |  | 0，50 s |

7 日明行 1，00s
8 日日次吅 2,005
9 日月 5．0日 5,00 s

10 日绍吅 10,00 s
11 U5E［日：User setting 1 （ $0-599,99 \mathrm{~s}$ ）
12 U5E［ User setting $2(0-599,99 \mathrm{~s})$

13 U5E「E U User setting 3（0－599，99 s）

## 7 Timer

| F13 |
| :--- | :--- | :--- |

## P Preset 1

2＊Pa Preset 2

3
P55 Prescaler

4 EqE．AR Totalizer／Batchcounter

| F16 | MRп丂E | Start／ Stop via Keyboard （manual） | $0^{*}$ $\ldots$ 1 | d．5月b <br> EnAbLE | Start／Stop locked via keys UP key＝Start；DOWN key＝Stop <br> Start／Stop enabled via keys UP key＝Start；DOWN key＝Stop |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F17 | PMMFES | Power－On Reset | 0＊ | MarE5 | Restore counter value |
|  |  |  | 1 | 日保 5 | Reset at Power On |

## 7 Timer

| F18 | Quthen | Output Signal Memory | 4E5 | Restart signal time after power fail 4．output switches |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 日昍朋 | Do not restart signal time after power fail |
| F19 | Mattat | Addtl． Totalizer | 8日日 455 | Enabled |
|  |  |  | 日昍吅 | Disabled |
| F20 | Prescl | Prescaler | d．58b | Prescaler not active |
|  |  |  | Enftile | Prescaler active |
| F21 | EIntur | Timer Type | EIMET | Preset timer |
|  |  |  | bRECH | Batch timer |


| RPL MR | Appli－ cation Output | 0 | アクロロレ | Output Preset 0 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1＊ |  | Run－Input |
|  |  | 2 | 5ヒロアロロ | Stop－Input |
|  |  | 3 | FESAL | Reset counter and |
|  |  | 4 | FESERE | Reset－only cou |
|  |  | 5 | FESロRE | Reset－only tota |
|  |  | 6 | Lロロ日日日 | Keylock input |
|  |  | 7 | HaLd日日 | Hold input（disp |

## 7 Timer

|  |  |  | 8 | EEREHG | Teach Input（count value becomes P 2） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 9 | 5EL日日日 | Set Input（set to Preset 0） |
| F30 | FESL日E | Lock Reset Key | 0＊ | ロாடロ | Keyboard reset enabled |
|  |  |  | 1 | 日日日吅 | Keyboard reset locked／delayed |
| F31 | 『ワロ吅 | Lock Pre－ set 0 Set－ ting | 0＊ | いロレロロ | P 0 Setting enabled |
|  |  |  | 1 | 日日日吅 | P 0 Setting locked／delayed |
| F32 | 口1保 | Lock Pre－ set 1 Set－ ting | 0＊ | ロாடロロ | P 1 Setting enabled |
|  |  |  | 1 | 日日日吅 | P 1 Setting locked／delayed |


| F33 | ロコロレロロ | Lock Pre－ set 2 Set－ ting | 0＊ | иாடロロ | P 2 Setting enabled |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 日日ロ吅 | P 2 Setting locked／delayed |
| F34 | P5ELロロ | Lock Pres－ caler Set－ ting | 0＊ | ロロィロロ | PSC Setting enabled |
|  |  |  | 1 | 回保碞 | PSC Setting locked／delayed |
| F35 | FLロロ日！ | Lock <br> Mode | 0＊ | 195E5 | 10 seconds delay |
|  |  |  | 1 | 保口 | Completely locked |
|  |  |  | 2 | inPlat | Lock function depending on Keylock input |

## 8 Shift Counter

## 8 Shift Counter

### 8.1.1 Shift Counter Description

(Supplementing the general description under 4)

| Function: | 2-shift counters enable the acquisition of 2 separate partial sums. <br> Counter input A acts on partial sum 1, whereas counter input B acts on partial sum 2. <br> Both partial sums are counted positively; the total sum is calculated mathematically <br> and corresponds to the summed-up total (or respectively, the difference) of the partial <br> sums. <br> The total sum remains unchanged after resetting one of the partial sums. |
| :--- | :--- |
| Counter mode of <br> operation: | The following counter modes of operation can be selected: <br> Difference counting and summation (totalizing) |
| Output signals - <br> mode of operation: | The counter operates in the "coincidence" mode, i.e. the output signals are enabled for <br> the programmed period of time after reaching the selected Preset value. <br> The total sum acts on Preset 0 <br> Partial sum 1 acts on Preset 1 <br> Partial sum 2 acts on Preset 2 |

## 8 Shift Counter

| Reset | After a reset at input C, both partial sums and the total sum are reset. <br> When resetting via the application input it is possible to reset one or both of the partial <br> sums or the total sum, depending on the selected programming. <br> When resetting via the keyboard, only the value shown on the display is reset. |
| :--- | :--- |
| Totalizer | The totalizer sums up all the input pulses, even if the partial sums and the total sum are <br> reset. The totalizer can only be reset manually. |

### 8.1.2 Scrolling between Total Sum and Partial Sums

The Shift key is used to scroll between the total sum and partial sums 1 and 2.
If a partial sum is shown, SU1 or SU2
will appear flashing in the lower display bar.


## 8 Shift Counter

### 8.2.1 Signal diagrams - Inputs (PNP Logic)

Adding/Adding (F1= A A r)

Input A

Input B
Counter reading
Partial sum 1
Partial sum 2
Total sum


## 8 Shift Counter

```
Adding/Subtracting (F1= A S r)
```



## 8 Shift Counter

### 8.2.2 Signal Diagrams - Output signals

Output signals - monostable
Coincidence signals P 0/Total Sum (F10), P 1/Partial sum 1 (F11), P 2/Partial sum 2 (F12) monostable


## 8 Shift Counter

### 8.3 Programming the Shift Counter Function Codes

| Programming mode | Change function setting | Save and change to next function | Return to display mode |
| :---: | :---: | :---: | :---: |
| $E+\nabla$ |  |  | E |
| Keep pressed and simultaneously turn Voltage On | press | press | press |
| Alternative display of Function codes | $+$ | The function codes are dis By pressing both keys simu the numerical display (F 0 keys once again the numb be displayed in addition. This | d as text in row 1. eously you can change to 35). After pressing these the selectable options will tting will be stored. |

## 8 Shift Counter

| Function code | Display Row 1 | Function | No． | Display Row 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | FELSEL | Factory Setting （Defaults） | 0＊ | 日回日品 | No function |  |  |
|  |  |  | 1 | 日日GE5 | All function codes are set to the values marked with＊ |  |  |
| F1 | ᄃ马MアL日 | Counter mode of Operation |  |  | Input A | Input B | Input C |
|  |  |  | 0 | A5FB | Adding | Subtracting | Reset |
|  |  |  | 1＊ | ARFF | Adding | Adding | Reset |
| F3 | M9PLSE | PNP／ <br> NPN－Lo－ <br> gic | 0 | MPM号 | NPN 8 V－Level |  |  |

## 8 Shift Counter

## 1＊PMP＿H PNP 8 V－Level

2 クロП＿L nPN TL－Level

3 PMP＿L PNPTL－Level

| F4 | in Rtt | Input Attenuat． | 0 | LaFrg | 30 Hz damping（attenuation）；e．g．for mechanical contacts |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1＊ | H．Frg | F max．（see chapter 4 and 10） |
| F5 | Preset | With／ without Preset | 0 | 日日GUE5 | With Preset |
|  |  |  | 1＊ | 日明吅 | Without Preset |

## 8 Shift Counter

| F6 | FESEL | Dynamic／ static Reset | $0^{*}$ | 5tRt | Static Reset（reset as long as signal is applied） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | ロゴ | Dynamic Reset（ready for counting，even if reset signal has been applied for a longer time） |
| F9 | But5！5 | Output signal | 0＊ | Retgr | Active On |
|  |  |  | 1 | Ratgff | Active Off |
| F10 | 51508 |  | 0 | d，58L | Disabled／no output signal |
|  |  | Signal time P 0 Total Sum | 1 | 6）5LR | Bistable；reset with Reset |
|  |  |  | 2 | 日日日ロココ | 0，02 s |
|  |  |  | 3 | 6．6．0．5 | $0,05 \mathrm{~s}$ |

## 8 Shift Counter



## 8 Shift Counter

12 リラET コ User setting 2 （0－599，99 s）

13 ：5 5 \％User setting 3 （0－599，99 s）

F11

| 5i5E： | Signal time P 1 | 0 | －，5月品 | Disabled／no output signal |
| :---: | :---: | :---: | :---: | :---: |
|  | Partial sum 1 | 1 | 口151R6 | Bistable；reset with Reset |

2 日月．ロコ $0,02 \mathrm{~s}$

3 日月．ロ5 0，05 s

4＊日回行 $0,10 \mathrm{~s}$

5 日日．ロП 0，20 s

## 8 Shift Counter

6 ..... 4.50 0,50s
7 ..... 100 $1,00 \mathrm{~s}$
8
200 ..... 2,00 s
9 日. 8. ..... $5.075,00 \mathrm{~s}$
10
10.00 10,00s
11 M5E! ( User setting 1 (0-599,99 s)
12 USET ..... I User setting 2 (0-599,99 s)
13
U5ETEヨ ..... U User setting 3 (0-599,99 s)

## 8 Shift Counter



## 8 Shift Counter

8 日日边 2，00s


10
日约旳 10，00s

11 ！5E5：User－Einstellung 1 （0－599，99 s）

12 แらE「コ User－Einstellung 2 （0－599，99 s）

13 M5E5 3 User－Einstellung 3 （0－599，99 s）


1 日日号 1 decimal place

## 8 Shift Counter



## 8 Shift Counter

| F15 | 己．LAEE | Display in 2nd Row | 0 | Pת | Preset 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 日昍吅 | Preset 1 |
|  |  |  | $2^{*}$ | 日日日日ロコ | Preset 2 |
|  |  |  | 3 | 日日日 55 | Prescaler |
|  |  |  | 4 | 日日少： | Partial sum 1 |
|  |  |  | 5 | 日日日5ı己 | Partial sum 2 |
|  |  |  | 6 | 日日日とロ | Totalizer |

## 8 Shift Counter

| F17 | PMMTES |  | 0＊ | 7atE5 | Restores the counter value |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Power－On <br> Reset |  | ................. |  |
|  |  |  | 1 | 日日G5E5 | Reset at Power On |
| F18 | G吅MEM | Output | 0 | 日日Gリ55 | Restart signal time after power fail $\triangle$ output switches |
|  |  | Memory | 1＊ | 日回日吅 | Do not restart signal time after power fail |
| F19 | A日GLロL |  | 0 | 日日GリE5 | Additional totalizer is enabled |
|  |  | Addtl． <br> Totalizer |  |  |  |
|  |  |  | $1^{*}$ | 日回吅 | No additional totalizer |
| F22 | APL IRP | Appli－ cation | 0 | Frarut | Output Preset value 0 |
|  |  | Input／ Output | 1＊ | ロコロハロ | 2nd counter input partial sum 1 |

## 8 Shift Counter

## 2 ロコ：円ワ 2nd counter input partial sum 2

3 FE5 5 ：Reset of partial sum 1

4 「E5ムコ Reset of partial sum 2

5 「E5．51』 Reset of both partial sums

6 FESEロE Reset of total sum

7 HロL日 Hold Input（display memory）

9 Lロロ日日 Keylock Input


## 8 Shift Counter

|  |  |  | 1 | 日日日ロロ | Keyboard reset locked／delayed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F31 | アワロロロ |  | 0＊ | ロாடロ | P 0 Setting enabled |
|  |  |  | 1 | 日日电吅 | P 0 Setting locked／delayed |
| F32 | ロ： |  | 0＊ | ロாடロ | P 1 Setting enabled |
|  |  |  | 1 | 日日日咎 | P 1 Setting locked／delayed |
| F33 | Pコロロヒ |  | 0＊ | 日ロレロロ | P 2 Setting enabled |
|  |  | Lock <br> Preset 2 |  |  |  |
|  |  |  | 1 | 日日曲吅 | P 2 Setting locked／delayed |

## 8 Shift Counter

| F34 | ロ55！ロロ | Lock <br> Prescaler <br> Setting | $0 *$ $\ldots \ldots$ 1 | unடロロ | PSC Setting enabled $\ldots \ldots \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F35 | FLロロRL | Lock <br> Mode | 0＊ | 17 5E5 | 10 seconds delay |
|  |  |  | 1 |  | Completely locked |
|  |  |  | 2 | inPlaE | Lock mode depends on keylock input |

## 9 Batch Counter

## 9 Batch Counter

### 9.1 Batch Counter Description

(Supplementing the general description in Chapter 4)

| Function: | Preset 2 is the main Preset setting. <br> Preset 1 is the Batch Preset or, respectively, the preset value of the 2nd totalizer. <br> In the batch operation the batch counter counts how often the main Preset is activated. <br> Example of an application: during length cutting operations, for example, both the <br> lengths (main preset) and number (batch preset) can be monitored. <br> In the Batch mode of operation, only positive entries are possible for P1; <br> negative entries will be stored as positive values. |
| :--- | :--- |
| Counter mode of <br> operation: | The following modes of operation can be adjusted for the counter: <br> Unidirectional counting, adding or subtracting; <br> Unidirectional counting with directional input; <br> Difference counting, summation and phase discrimination (quad) <br> with single, double or quadruple evaluation. |
| Output signals Mode <br> of Operation: | The counter operates in the coincidence mode, i.e. the output signals are enabled for the <br> programmed duration when the selected preset value is reached. |

## 9 Batch Counter

| Prescaler Output | The Prescaler output is an application output. |
| :--- | :--- |
| PSC-out: | With each increase of the counter reading the number of output pulses corresponds to <br> the respective number of increments. <br> The pulse length of the prescaler output corresponds <br> to a frequency of 500 Hz. <br> When using the prescaler output the max. input frequency is: <br> F max = 500 / PSC. <br> So it is possible that the maximum input frequency can not be reached. |

## 9 Batch Counter

### 9.2 Signal Diagrams - Inputs and Outputs

Unidirectional count (F1 = C G r), Batch counter (F19 = bAtch),
Preset 2 (Main Preset $=5$, Preset 1 (Batch Preset) $=3$


## 9 Batch Counter

### 9.3 Programming the Batch Counter Function Codes

| Programming mode | Change function setting | Save and change to next <br> function |
| :---: | :---: | :---: |
| Keep pressed and <br> simultaneously turn <br> Voltage On | press display mode |  |
| Alternative display of |  |  |
| Function codes |  |  |

## 9 Batch Counter

| Function code | Display Row 1 | Function | No． | Display Row 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F0 | FELSEL | Factory | 0＊ | 日明吅 | No function |  |  |
|  |  | Setting （Defaults） | 1 | G日GE5 | All function with＊ | s are set to th | lues marked |
| F1 | 「תMnt | Counter Mode of | 0＊ | 55 | Input A | Input B | Input C |
|  |  | Operation |  |  | Subtracting | Gate | Reset |
|  |  |  | 1 | Fםr | Count Input | Directional input | Reset |
|  |  |  | 2 | F］ | Count <br> Input | Directional input | Gate |
|  |  |  | 3 | A5F | Adding | Subtracting | Reset |
|  |  |  | 4 | A5 | Adding | Subtracting | Reset |

## 9 Batch Counter



## 9 Batch Counter

2 MアПーL NPN TL－Level

3 PMP＿L PNPTLL－Level

| F4 | in Rte | Input damping （At－ tenuat） | 0 $\ldots$ $1^{*}$ | $\begin{aligned} & \text { Lם FrG } \\ & \cdots \cdots \cdots \cdots \cdots \\ & H_{1} \text { FrG } \end{aligned}$ | 30 Hz damping（e．g．for mechanical contacts） <br> F max．（see chapter 4 and 10） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F5 | 「5月0ロ | Set／Re－ set－Mode | 0＊ | FE5 | Reset to 0 |
|  |  |  | 1 | ATE5 $\quad$－ | Automatic reset to 0 when Preset value 2 is reached |
|  |  |  | 2 | 5EL Pコ | Sets to Preset value 2 |
|  |  |  | 3 | R5ELPE | Automatic setting to Preset 2 after reaching 0 |

## 9 Batch Counter

| F6 | FESELG | Dynamic／ <br> static <br> Reset | 0＊ | 5LRL | Static Reset（reset as long signal is applied） |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | ロリா | Dynamic Reset（ready for counting after reset， even if reset signal has been applied for a longer time） |
| F9 | アロヒら！5 |  | 0＊ | REtGr | Active On |
|  |  | signal | 1 | REEMFF | Active Off |
| F10 | 515 5 | Signal time P 0 | 0 | は，¢Rロ！ | Disabled／no output signal |
|  |  |  | 1 | ロ！5ヒRロ | Bistable；reset with Preset 2 or Reset |
|  |  |  | 2 | 日日日号コ | 0，02 s |
|  |  |  | 3 | 日日 0.95 | 0，05 s |

## 9 Batch Counter

4＊日明行 0，10s
5
$0.2 \square$ 0，20s
6
8.50 0，50 s
7
E．E．E $1001,00 \mathrm{~s}$
8 ..... $2.002,00 \mathrm{~s}$
9 日品品 5，00s
10 ..... 10.0 10，00s
11 U5E「

## 9 Batch Counter

12 U5E5 Z User－setting $2(0-599,99 \mathrm{~s}$ ）

13 次 5 User－setting 3 （0－599，99 s）


2 日日日凸』コ 0，02s

3 日明品 $0,05 \mathrm{~s}$

4＊日明号 $0,10 \mathrm{~s}$

5 日月，ㄹ．0，20s

## 9 Batch Counter

| 6 | 日．675\％ | 0，50 s |
| :---: | :---: | :---: |
| 7 | 日日． 1.5 | 1，00 s |
| 8 | 日吗号 | 2，00 s |
| 9 | ВВВ5．пП | 5，00 s |
| 10 | 日㕲吅 | 10，00 s |
| 11 | U5ETGi | User－setting 1 （0－599，99 s） |
| 12 | H5ETG | User－setting 2 （0－599，99 s） |
| 13 | H5EFGJ | User－setting 3 （0－599，99 s） |

## 9 Batch Counter

| F12 |  | 51512 | Signal time P 2 | 0 | d．5月bL | Disabled |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | －5LR | Bistable Cannot Reset |
|  |  |  |  | 2 | 日日日岛コ | 0，02 s |
|  |  |  |  | 3 | 日日日 0.5 | 0，05 s |
|  |  |  |  | $4^{*}$ | 日日号昍 | 0，10 s |
|  |  |  |  | 5 | 日日日牙 | 0，20 s |
|  |  |  |  | 6 | 日6．65．50 | 0，50 s |
|  |  |  |  | 7 | 8．8． $19 \%$ | 1，00 s |

## 9 Batch Counter

## 8 日昭已吅 2，00s

9 日者品 5，00s

10
10.00 10，00

11 U5ET日：User－setting 1 （ 0 －599，99 s）

12 リラE「ヨ User－setting 2 （0－599，99 s）

13 U5E「ヨ User－setting 3 （0－599，99 s）

1 日回 1 decimal place

## 9 Batch Counter

2 日明吅 2 decimal places


4 हु०००० 4 decimal places
F14 FLA5H $\begin{gathered}\text { Display } \\ \text { flashes }\end{gathered} 0^{*}$ MaFL5H Donotflash

1
PI Flashes as long as $P 0$ is active

2
F Flashes as long as $P 1$ is active

3
『コ Flashes as long as P 2 is active
$4 \quad \square \Omega-1-\beth \quad$ Flashes if a Preset is active

## 9 Batch Counter



## 9 Batch Counter



## 9 Batch Counter

2 ローアロL Directional count output

3＊Lnt M口 Count input，adding

4 EnLロn Count input，subtracting

5 FESRLL Reset counter and Batch counter or 2nd totalizer

6 FE5「nL Resets only counter

7 FE5BRL Resets only Batch counter or 2nd totalizer

8 FREEG Gate input

9 Lロロ日日日 Keylock input

## 9 Batch Counter

10 HaLd日．Hold input（display memory）

11 EER［HE Teach input Count value becomes P 2

12 5EL日日．Set－input（sets to Preset 0）

| F30 | FESLaE | Lock Re－ set key | $0^{*}$ | unla | Keyboard reset enabled |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 3日日吅 | Keyboard reset locked／delayed |
| F31 | P\％回 | Lock | $0^{*}$ | uriag | P 0 Setting enabled |
|  |  | Preset 0 |  |  |  |
|  |  | Setting | 1 | 3日． 1 口 | P 0 Setting locked／delayed |

## 9 Batch Counter



## 9 Batch Counter

2 inPlロロ Lock mode depends on Keylock input

## 10 Technical Data

## 10 Technical Data

## General

| Display | LCD reflective, <br> positively transmissive; black digits; background illumination * <br> negatively transmissive; white or red digits; illumination,* <br> 2 lines, counter reading/presettings 6-digits; decimal point (up to 4 decimals) |
| :---: | :---: |
| Digit hight | 1st line 9.3 mm ; 2nd line 7.2 mm |
| Supply voltage | SELV: 12-30 VDC; protected against polarity reversal <br> SELV: 24 VAC, $50 / 60 \mathrm{~Hz}, \pm 10 \%$ <br> 115 VAC; 230 VAC, $50 / 60 \mathrm{~Hz}, \pm 10 \%$ <br> $90-260$ VAC; $50 / 60 \mathrm{~Hz}$ * |
| Current consumption | $12 \text {... } 30 \text { VDC < } 200 \mathrm{~mA} \text {, }$ <br> 24 VAC $<250 \mathrm{~mA}$; including sensor supply 115/230 VAC < 50 mA ; incl. sensor supply 90-260 VAC $<400 \mathrm{~mA}$; incl. sensor supply |
| Power consumption | < 5 W |
| Duty cycle | 100\% |
| Overload protection | external fuse DC: 0,16 AT (IEC 127); DC: 0,2 AT (UL 198) 24 VAC: 315 mAT; 230 VAC: 32 mAT; 115 VAC: 63 mA T |


| Overload protection <br> Relay output | external fuse $230 \mathrm{~V}, 2,5 \mathrm{~mA} \mathrm{~T}$ |
| :--- | :--- |
| Sensor supply | Only for AC operation: 12-24 VDC load-dependent; max. 50 mA |
| Storage of values | NV-memory > 10 years |
| Electrical connections | Plug-in screw-type connections / Terminals |
| Cable cross-section | $1 . . .1 .5 \mathrm{~mm}^{2}$ with wire-end sleeves |
| Amplitude threshold | $<2 \mathrm{~V}$ and $>8 \mathrm{~V}$ or < 1 V and $>4 \mathrm{~V}$ at TTL-level amplitude max. 40 VDC |
| Active edge | programmable positive for PNP-input, |
| negativ for NPN-input |  |

## 10 Technical Data

| Reset | manual reset via keyboard, <br> external reset static or dynamic programmable; pulse length min. 5 ms , <br> automatic reset after reaching Preset 2, <br> (No pulse losses at max. counter frequency due to automatic reset function). <br> via application input (programmable) and programmable Power-On Reset |
| :--- | :--- |
| Set function | Setting to Preset 0 (independent of reset) |
| Display and Preset Range | -999 999 up to + 999 999 |
| Warning signal | Display flashes when preset 0, 1 or 2 are active |
| Signal times | 0,01 s to 599,99 s or bistable programming; tolerance + 10ms; active On or Off |
| Relay Output | Change-over contact max. $250 \mathrm{VAC} / 30 \mathrm{VDC} / 5 \mathrm{~A}$ <br> for P 1 and P 2 |
| Change-over contact min. $5 \mathrm{VAC} / 5 \mathrm{VDC} / 10 \mathrm{~mA}$ |  |
| delay < 10 ms |  |

## 10 Technical Data

## Counter

| Counter mode of <br> operation Input A,B | Unidirectional; adding or subtracting; directional input; <br> Differential operation, add / sub; Summation (Totalizing) add / add; <br> Phase discriminator single, double or quadruple evaluation |
| :--- | :--- |
| Control Input | Reset; Gate |
| Preselect Mode | Absolute or trail, Range signal /limit values (sign. 1 < P1, sign. 2 > P 2) |
| Application Input/Output | Output: $\quad$ Prescaler-out, Preset 0-out, Direction-out <br> Input: addtl. counter input add / sub, Reset, Set, Gate, Keylock, Hold, Teach in |

## Batch Counter

Mode $\quad$ Batch counter with Preset or 2nd totalizer with Preset

## Shift Counter

Counter Mode of Operation Differential counting add/sub, totalizing add/add

Tachometer

| Measuring Principle | Period $($ cycle $)$ measurement $(1 / \mathrm{Tau})$ |
| :--- | :--- |
| Time base | $1 / \mathrm{min}$ or $1 / \mathrm{s}$ |
| Min. frequency | 1 Hz or $0,1 \mathrm{~Hz}$ |

## 10 Technical Data

| Limit values | 2 alarms with programmable startup suppression <br> +1 additional upper limit value on the application output |
| :---: | :---: |
| Tachometer mode of operation | Unidirectional add oder sub; directional input; <br> Differential add / sub; totalizing add / add; <br> Phase discriminator single, double or quadruple evaluation, <br> $A / B$ or (A-B) / A \% |
| Application Input/Output | Output: Preselect 0-out, Direction-out Input: addtl. counter input add / sub, Keylock, Hold, Teach in |
| Accuracy of the tachometer function | Time base: $\pm 30 \mathrm{ppm}$ <br> Measuring principle: Periodic measurement <br> Measuring time: min. $5 \mathrm{~s} /$ max. 1s oder 10 s <br> Measuring resolution: $0,4 \mu \mathrm{~s}(<30 \mathrm{ppm})$ <br> Display resolution: 4 decimal places, 1 Digit = 100 ppm |
| Overall tolerance | = Shown resolution + tolerance of timebase $=130 \mathrm{ppm}$ |

## Timer

| Measuring Principle | Pulse-width or cycle duration measurement <br> Start Inp. A + Stop Inp. B; Start/Stop key |
| :--- | :--- |
| Time base | Programmable in sec, min, h or hh.mm.ss |
| Resolution | $1 ; 0,1 ; 0,01 ; 0,001 ; 0,0001$ |
| Function | Single-pulse or cumulative measurement |


| Application Input/Output | Output: <br> Input: | Preselect 0-out <br> addlt. Run, Stop, Reset, Set, Keylock, Hold, Teach in |
| :--- | :--- | :--- |
| Accuracy of the timer | Time base: | $\pm 30 \mathrm{ppm}$ |
|  | Start / Stop-point in time: $\quad 16 \mu \mathrm{~s} / 16 \mathrm{~ms}$ (not damped / damped) |  |
|  | Resolution: | $100 \mu \mathrm{~s}=100 \mathrm{ppm}$ |
| Gesamttolleranz | = Shown resolution + tolerance of timebase $=130 \mathrm{ppm}$ |  |

Environment. cond. Safety Rules

| General design | EN $61010 /$ IEC 61010-1 |
| :--- | :--- |
| Protection Class | II; EN 61010-1 / IEC 61010-1 |
| Pollution degree | V 2, EN 50178 |
| EMC - Interference | EN 61326-1 industrial environment ** |
| immunity |  |
| EMC - Emission | EN 61326-1 Class B ** |
| Ambient temperature | $0^{\circ} \ldots 50^{\circ} \mathrm{C}$ EN 60 068-2-1/2 |
| Storage temperature | $-20^{\circ} \ldots+65^{\circ} \mathrm{C}$ EN 60 068-2-1/2 |
| Climate | $40^{\circ} \mathrm{C} / 93 \%$ rel hum. class 4K4H, EN 60 068-2-78 |
|  | $25-50^{\circ} \mathrm{C} / 93 \%$ rel hum., cyclic, EN 60 068-2-38 |
| Degree of protection | IP 65 front side; EN 60529 |
|  | IP 20 terminals |

## 10 Technical Data

| Vibration resistance | $10 \mathrm{~m} / \mathrm{s}^{2}(10 \ldots 150 \mathrm{~Hz}) ;$ IEC 60 068-2-6 |
| :--- | :--- |
| Shock resistance | $100 \mathrm{~m} / \mathrm{s}^{2}(18 \mathrm{~ms}) ;$ IEC 60 068-2-27 |
| Resistence to chemicals | Frontfoil acc. to DIN 42 115-2 |
| Approvals | UL, CSA (pending) |
| RoHS | compliant |

## Mechanical Data

| Installation | Front-panel installation with tenter (frame) Front panel thickness max. 11 mm |
| :--- | :--- |
| Dimensions | $48 \mathrm{~mm} \times 48 \mathrm{~mm} \times 118 \mathrm{~mm}$, installation depth 110 mm DIN 43700 |
| Front-panel cutout | $45 \mathrm{~mm} \times 45 \mathrm{~mm}+0,3 \mathrm{~mm}$ |
| Weight | approx. 200 g |

* not yet available
** For cable length > 30 m , for connection to a DC-supply-network and input level $T \mathrm{TL}$ an additional protection circuit is necessary.


## 11 Transport, Packaging, Storage / 12 Maintenance and cleaning

## 11 Transport, Packaging, Storage

O Note! Damage may be caused by improper transport!
Improper transport may cause considerable damage.
Do not remove the packaging before assembly and installation.
The packaging offers ideal protection against mechanical damage and loss of single parts, such as the plugs or operating instructions. Therefore, do not take the multifunctional counter out of its packaging until you actually have to start your assembly and installation work.

Inspect the shipment for completeness and possible signs of transport damage immediately after receipt.

## 12 Maintenance and cleaning

The multifunction counter does not require any maintenance.
The front side may be cleaned with commercially available household detergents.
For protection against pollution, a transparent, flexible protection cover is available as accessory
(see chapter 17). With this protection cover, the counter display can be read and the buttons can be used.

## 13 Malfunctions

## 13 Malfunctions



## Warning! <br> Danger of injuries due to improper fault correction! Improper fault correction may cause serious damage or personal injury.

The machine/plant manufacturer is responsible for the preparation of operating instructions or a description stating the potential errors and the appropriate corrective action, as well as potential hazards and the behavior in the event of malfunctions. This is dependent on the design concept and construction of the machine or plant.

The first step is to determine if the cause of an error or malfunction implies a possible fault of the multifunction counter.

## Overview of Errors

| Error | Possible cause | To be corrected by: |
| :--- | :--- | :--- |
| Display remains dark | Machine/plant not powered on | Operator |
| Value is not stored | Defective voltage supply | Qualified electrician |
|  | Power-on reset is active (F17) | Skilled personnel |
|  |  |  |

13 Malfunctions

| Counter/tachometer does not count | Defective signal generator; Counter does not re- <br> ceive any counting signals | Skilled personnel |
| :--- | :--- | :--- |
|  | Adjusted to incorrect mode of operation (F1), <br> Single-channel, directional input, differential <br> counting, phase discriminator | Skilled personnel |
|  | Incorrect adjustment of PNP/NPN logic and input <br> level (F3) | Skilled personnel |
|  | High-level does not exceed the upper amplitude <br> threshold; low-level does not fall below the lower <br> amplitude threshold | Qualified electrician |
|  | Continuous reset signal is applied | Qualified electrician |
|  | Continuous gate signal is applied | Qualified electrician |
| Incorrect counting of counter/ <br> tachometer | Prescaler value is not correct | Skilled personnel |
|  | Phase discriminator - edge evaluation not cor- <br> rectly adjusted (F2) | Skilled personnel |
|  | Input frequency too high (F4) | Skilled personnel |
| Keyboard Reset not possible | Keys are locked (F30 + F35) | Skilled personnel |
| Presetting not possible | Keys are locked (F31, F32, F33 + F35) | Skilled personnel |

## 14 Spare Parts / 15 Dismantling and Disposal

| Prescaler adjustment not possible | Keys are locked (F34+ F35) | Skilled personnel |
| :--- | :--- | :--- |
| Signal 0, 1 or 2 not received | Signal deactivated (F10, F11, F12) | Skilled personnel |
|  | User signal time adjusted to 0,000 | Skilled personnel |

## 14 Spare Parts

## Warning! <br> Danger due to faulty spare parts!

The use of incorrect or faulty spare parts may cause damage, malfunction or even total breakdown and safety hazards. Therefore, please make sure only to use the original spare parts provided by the manufacturer.

The multifunction counter may only be opened by the manufacturer.
Exclusively outer components are available as spare parts.
The order numbers are given in Chapter 17.

## 15 Dismantling and Disposal

After reaching the end of its useful life the multifunction counter has to be disposed of or recycled according to the applicable environmental protection rules.

16 Ordering Information

## 16 Ordering Information

| Anzeige | Relais | 12-24 VDC | 24 VAC | 115 VAC | 230 VAC | 90-260 VAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCD reflectiv | - | 0772100 | 0772110 | 0772120 | 0772130 | 0772 140* |
| LCD reflectiv | 1 | 0772101 | 0772111 | 0772121 | 0772131 | 0772 141* |
| LCD reflectiv | 2 | 0772102 | 0772112 | 0772122 | 0772132 | 0772 142* |
| LCD transmissive positiv* | - | 0772200 | 0772210 | 0772220 | 0772230 | 0772 240* |
| LCD transmissive positiv* | 1 | 0772201 | 0772211 | 0772221 | 0772231 | 0772 241* |
| LCD transmissive positiv* | 2 | 0772202 | 0772212 | 0772222 | 0772232 | 0772 242* |
| LCD transmissive negativ* | - | 0772310 | 0772310 | 0772320 | 0772330 | 0772 340* |
| LCD transmissive negativ* | 1 | 0772301 | 0772311 | 0772321 | 0772331 | $0772341^{*}$ |
| LCD transmissive negativ* | 2 | 0772302 | 0772312 | 0772322 | 0772332 | 0772 342* |
| LCD transmissive rot* | - | 0772400 | 0772410 | 0772430 | 0772430 | 0772 440* |
| LCD transmissive rot* | 1 | 0772401 | 0772411 | 0772431 | 0772431 | 0772 441* |
| LCD transmissive rot* | 2 | 0772402 | 0772412 | 0772432 | 0772432 | 0772 442* |

Reflective:
Positively transmissive:
Negatively transmissive:
Negatively transmissive:
black digits on a bright reflecting background black digits on an illuminated background white illuminated digits on a black background red illuminated digits on a black background

* not yet available


## 17 Accessories and spare parts

## 17 Accessories

| Adapter front panel | Order no. | Dimensions | Front panel cutout |
| :--- | :--- | :--- | :--- |
|  | 1405675 | $60 \times 75 \mathrm{~mm}$ <br> $72 \times 72 \mathrm{~mm}$ | $55 \times 55 \mathrm{~mm}$ <br> $68 \times 68 \mathrm{~mm}$ <br> $1406 \times 55 \mathrm{~mm}$ for installation of 2 |
|  | 1405679 | $125 \times 60 \mathrm{~mm}$ | $106 \times 5$ <br> counters $48 \times 48$ |
| protection cover | 2772052 |  |  |
| (tenter) frame | 1721014 | $48 \times 48 \mathrm{~mm}$ |  |



## HENGSTLER

Hengstler GmbH | Uhlandstr. 49 | 78554 Aldingen
Telefon +49 (0) 7424-890 | info@hengstler.com www.hengstler.com

