TIBPAL16L8-25C, TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16L8-30M, TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT THE PAL® CIRCUITS SRPS059A - FEBRUARY 1984 - REVISED DECEMBER 2010 High-Performance Operation: Propagation Delay C Suffix . . . 25 ns Max M Suffix . . . 30 ns Max - Functionally Equivalent, but Faster Than PAL16L8A, PAL16R4A, PAL16R6A, and PAL16R8A - Power-Up Clear on Registered Devices (All Register Outputs Are Set High, but Voltage Levels at the Output Pins Go Low) - Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs - Dependable Texas Instruments Quality and Reliability | DEVICE | I
INPUTS | 3-STATE
O
OUTPUTS | REGISTERED
Q
OUTPUTS | I/O
PORTS | |---------|-------------|-------------------------|----------------------------|--------------| | PAL16L8 | 10 | 2 | 0 | 6 | | PAL16R4 | 8 | 0 | 4 (3-state
buffers) | 4 | | PAL16R6 | 8 | 0 | 6 (3-state
buffers) | 2 | | PAL16R8 | 8 | 0 | 8 (3-state
buffers) | 0 | #### description These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT™ circuits combine the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are available for further reduction in board space. The TIBPAL16' C series is characterized from 0°C to 75°C. The TIBPAL16' M series is characterized for operation over the full military temperature range of -55°C to 125°C. TIBPAL16L8' C SUFFIX ... J OR N PACKAGE M SUFFIX ... J OR W PACKAGE (TOP VIEW) TIBPAL16L8' C SUFFIX . . . FN PACKAGE M SUFFIX . . . FK PACKAGE (TOP VIEW) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. IMPACT is a trademark of Texas Instruments. PAL is a registered trademark of Advanced Micro Devices Inc # TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 TIBPAL16R4' C SUFFIX ... J OR N PACKAGE M SUFFIX ... J OR W PACKAGE (TOP VIEW) TIBPAL16R4' C SUFFIX . . . FN PACKAGE M SUFFIX . . . FK PACKAGE (TOP VIEW) TIBPAL16R6' C SUFFIX . . . J OR N PACKAGE M SUFFIX . . . J OR W PACKAGE (TOP VIEW) TIBPAL16R6' C SUFFIX . . . FN PACKAGE M SUFFIX . . . FK PACKAGE (TOP VIEW) TIBPAL16R8' C SUFFIX . . . J OR N PACKAGE M SUFFIX . . . J OR W PACKAGE (TOP VIEW) TIBPAL16R8' C SUFFIX . . . FN PACKAGE M SUFFIX . . . FK PACKAGE (TOP VIEW) #### functional block diagrams (positive logic) denotes fused inputs SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### functional block diagrams (positive logic) outline denotes fused inputs ## TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS SRPS059A FEBRUARY 1984 – REVISED DECEMBER 2010 ## TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE *IMPACT* ™ *PAL*® CIRCUITS SRPS059A FEBRUARY 1984 – REVISED DECEMBER 2010 # TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, V _{CC} (see Note 1) | 7 V | |---|------------------| | Input voltage (see Note 1) | 5.5 V | | Voltage applied to disabled output (see Note 1) | 5.5 V | | Operating free-air temperature range | 0°C to 75°C | | Storage temperature range, T _{sta} | . −65°C to 150°C | NOTE 1: These ratings apply, except for programming pins, during a programming cycle. #### recommended operating conditions | | pply voltage | | 4.75 | | | | |------------------------|--|------|------|----|------|-----| | V _{IH} Higl | | | 4.75 | 5 | 5.25 | ٧ | | | h-level input voltage | | 2 | | 5.5 | V | | V _{IL} Low | v-level input voltage | | | | 8.0 | V | | I _{OH} Higl | h-level output current | | | | -3.2 | mA | | I _{OL} Low | v-level output current | | | | 24 | mA | | f _{clock} Clo | ck frequency | | 0 | | 30 | MHz | | 4 Dul | and distribution along (and Nata O) | High | 10 | | | | | t _w Puls | se duration, clock (see Note 2) | Low | 15 | | | ns | | t _{su} Set | up time, input or feedback before clock↑ | | 20 | | | ns | | t _h Hole | d time, input or feedback after clock↑ | | 0 | | | ns | | T _A Ope | erating free-air temperature | | 0 | 25 | 75 | °C | NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified are for clock high or low only, but not for both simultaneously. ### TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS SRPS059A FEBRUARY 1984 – REVISED DECEMBER 2010 #### electrical characteristics over recommended operating free-air temperature range | F | PARAMETER | | TEST CONDITION | IS | MIN | TYP [†] | MAX | UNIT | |-----------------------------|-----------|----------------------------|----------------------------|--------------|-----|------------------|-------|------| | V _{IK} | | $V_{CC} = 4.75 V$, | I _I = -18 mA | | | | -1.5 | V | | V _{OH} | | $V_{CC} = 4.75 V$, | $I_{OH} = -3.2 \text{ mA}$ | | 2.4 | 3.3 | | V | | V _{OL} | | $V_{CC} = 4.75 V$, | $I_{OL} = 24 \text{ mA}$ | | | 0.35 | 0.5 | V | | | Outputs | ., 5.05.)/ | V 07V | | | | 20 | • | | l _{ozh} | I/O ports | $V_{CC} = 5.25 \text{ V},$ | $V_0 = 2.7 \text{ V}$ | | | | 100 | μΑ | | | Outputs | ., 5.05.), | V 0.4V | | | | -20 | • | | l _{OZL} | I/O ports | $V_{CC} = 5.25 \text{ V},$ | $V_O = 0.4 V$ | | | | -250 | μΑ | | II | | $V_{CC} = 5.25 \text{ V},$ | V _I = 5.5 V | | | | 0.1 | mA | | I _{IH} | | V _{CC} = 5.25 V, | V _I = 2.7 V | | | | 20 | μΑ | | I _{IL} | | $V_{CC} = 5.25 \text{ V},$ | $V_{I} = 0.4 V$ | | | | -0.25 | mA | | l _O [‡] | | V _{CC} = 5.25 V, | V _O = 2.25 V | | -30 | | -125 | mA | | I _{CC} | | V _{CC} = 5.25 V, | $V_I = 0$, | Outputs open | | 75 | 100 | mA | $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 $^{\circ}$ C. #### switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN | TYP [†] | MAX | UNIT | |------------------|-----------------|----------------|---------------------|-----|------------------|-----|------| | f _{max} | | | | 30 | | | MHz | | t _{pd} | I, I/O | O, I/O | | | 15 | 25 | ns | | t _{pd} | CLK↑ | Q | R1 = 500Ω , | | 10 | 15 | ns | | t _{en} | OE↓ | Q | R2 = 500Ω , | | 15 | 20 | ns | | t _{dis} | OE↑ | Q | See Figure 3 | | 10 | 20 | ns | | t _{en} | I, I/O | O, I/O | | | 14 | 25 | ns | | t _{dis} | I, I/O | O, I/O | | | 13 | 25 | ns | $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The output conditions have been chosen to produce a current that closely approximates one-half of the short-circuit output current, I_{OS}. # TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, V _{CC} (see Note 1) | 7 V | |---|----------------| | Input voltage (see Note 1) | 5.5 V | | Voltage applied to disabled output (see Note 1) | 5.5 V | | Operating free-air temperature range | -55°C to 125°C | | Storage temperature range, T _{sto} | -65°C to 150°C | NOTE 1: These ratings apply, except for programming pins, during a programming cycle. #### recommended operating conditions | | | | MIN | NOM | MAX | UNIT | |--------------------|---|------|-----|-----|-----|------| | V _{CC} | Supply voltage | | 4.5 | 5 | 5.5 | V | | V _{IH} | High-level input voltage | | 2 | | 5.5 | V | | V _{IL} | Low-level input voltage | | | | 8.0 | V | | I _{OH} | High-level output current | | | | -2 | mA | | I _{OL} | Low-level output current | | | | 12 | mA | | f _{clock} | Clock frequency | | 0 | | 25 | MHz | | | Dulas duration alask (ass Nata 0) | High | 15 | | | | | t _w | Pulse duration, clock (see Note 2) | Low | 20 | | | ns | | t _{su} | Setup time, input or feedback before clock↑ | | 25 | | | ns | | t _h | Hold time, input or feedback after clock↑ | | 0 | | | ns | | T _A | Operating free-air temperature | | -55 | 25 | 125 | °C | NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified are for clock high or low only, but not for both simultaneously. ## TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M LOW-POWER HIGH-PERFORMANCE *IMPACT* ™ *PAL*® CIRCUITS SRPS059A FEBRUARY 1984 – REVISED DECEMBER 2010 #### electrical characteristics over recommended operating free-air temperature range | P | ARAMETER | | TEST CONDITION | IS | MIN | TYP† | MAX | UNIT | |------------------|------------|---------------------------|--------------------------|--------------|-----|------|-------|------| | V _{IK} | | $V_{CC} = 4.5 \text{ V},$ | I _I = -18 mA | | | | -1.5 | V | | V _{OH} | | $V_{CC} = 4.5 \text{ V},$ | $I_{OH} = -2 \text{ mA}$ | | 2.4 | 3.2 | | V | | V _{OL} | | $V_{CC} = 4.5 \text{ V},$ | I _{OL} = 12 mA | | | 0.25 | 0.4 | V | | | Outputs | V 55V | V 07V | | | | 20 | | | l _{OZH} | I/O ports | V _{CC} = 5.5 V | $V_0 = 2.7 \text{ V}$ | | | | 100 | μΑ | | | Outputs | V 55V | V 0.4V | | | | -20 | | | I _{OZL} | I/O ports | $V_{CC} = 5.5 \text{ V},$ | $V_O = 0.4 V$ | | | | -250 | μΑ | | | Pin 1, 11 | V 55V | V 55V | | | | 0.2 | A | | I _I | All others | V _{CC} = 5.5 V, | $V_{l} = 5.5 V$ | | | | 0.1 | mA | | | Pin 1, 11 | | | | | | 50 | | | I _{IH} | I/O ports | V _{CC} = 5.5 V, | $V_{I} = 2.7 V$ | | | | 100 | μΑ | | | All others | | | | | | 20 | | | | I/O ports | V 55V | V 04V | | | | -0.25 | 4 | | I _{IL} | All others | $V_{CC} = 5.5 \text{ V},$ | $V_I = 0.4 V$ | | | | -0.2 | mA | | los‡ | | V _{CC} = 5.5 V, | V _O = 0.5 V | | -30 | | -250 | mA | | I _{CC} | | V _{CC} = 5.5 V, | $V_I = 0$, | Outputs open | | 75 | 105 | mA | $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C. ## switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN | TYP† | MAX | UNIT | |------------------|-----------------|----------------|---------------------|-----|------|-----|------| | f _{max} | | | | 25 | | | MHz | | t _{pd} | I, I/O | O, I/O | | | 15 | 30 | ns | | t _{pd} | CLK↑ | Q | R1 = 390 Ω, | | 10 | 20 | ns | | t _{en} | OE↓ | Q | R2 = 750 Ω , | | 15 | 25 | ns | | t _{dis} | OE↑ | Q | See Figure 4 | | 10 | 25 | ns | | t _{en} | I, I/O | O, I/O | | | 14 | 30 | ns | | t _{dis} | I, I/O | O, I/O | | | 13 | 30 | ns | $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C. [‡] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. Set V_O at 0.5 V to avoid test-equipment degradation. SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### programming information Texas Instruments programmable logic devices can be programmed using widely available software and inexpensive device programmers. Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments programmable logic also is available, upon request, from the nearest TI field sales office or local authorized TI distributor, by calling Texas Instruments at +1 (972) 644–5580, or by visiting the TI Semiconductor Home Page at www.ti.com/sc. #### preload procedure for registered outputs (see Figure 1 and Note 3) The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below. - Step 1. With V_{CC} at 5 V and Pin 1 at V_{IL}, raise Pin 11 to V_{IHH}. - Step 2. Apply either V_{IL} or V_{IH} to the output corresponding to the register to be preloaded. - Step 3. Pulse Pin 1, clocking in preload data. - Step 4. Remove output voltage, then lower Pin 11 to V_{IL} . Preload can be verified by observing the voltage level at the output pin. NOTE 3: $t_d = t_{su} = t_h = 100 \text{ ns to } 1000 \text{ ns V}_{IHH} = 10.25 \text{ V to } 10.75 \text{ V}$ Figure 1. Preload Waveforms #### TIBPAL16R4-25C, TIBPAL16R6-25C, TIBPAL16R8-25C TIBPAL16R4-30M, TIBPAL16R6-30M, TIBPAL16R8-30M .OW-POWER HIGH-PERFORMANCÉ *IMPACT* ™ *PAL*® CIRCUITS SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### power-up reset (see Figure 2) Following power up, all registers are set high. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the rise of V_{CC} be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met. [†] This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data. Figure 2. Power-Up Reset Waveforms [‡] This is the setup time for input or feedback. SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### PARAMETER MEASUREMENT INFORMATION #### **LOAD CIRCUIT FOR 3-STATE OUTPUTS** - NOTES: A. C_L includes probe and jig capacitance and is 50 pF for t_{pd} and t_{en}, 5 pF for t_{dis}. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses have the following characteristics: PRR ≤ 1 MHz, t_{r} = $t_{f} \leq 2$ ns, duty cycle = 50% - D. When measuring propagation delay times of 3-state outputs from low to high, switch S1 is closed. When measuring propagation delay times of 3-state outputs from high to low, switch S1 is open. - E. Equivalent loads may be used for testing. Figure 3. Load Circuit and Voltage Waveforms SRPS059A FEBRUARY 1984 - REVISED DECEMBER 2010 #### PARAMETER MEASUREMENT INFORMATION #### **LOAD CIRCUIT FOR 3-STATE OUTPUTS** - NOTES: A. C_L includes probe and jig capacitance and is 50 pF for t_{pd} and t_{en}, 5 pF for t_{dis}. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses have the following characteristics: PRR \leq 10 MHz, $t_r = t_f \leq$ 2 ns, duty cycle = 50% - D. When measuring propagation delay times of 3-state outputs, switch S1 is closed. - E. Equivalent loads may be used for testing. Figure 4. Load Circuit and Voltage Waveforms 25-Jan-2012 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |-------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | 5962-85155052A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515505RA | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515505SA | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | Call TI | | | 5962-85155062A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515506RA | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515506SA | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | Call TI | | | 5962-85155072A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515507RA | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515507SA | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | Call TI | | | 5962-85155082A | ACTIVE | LCCC | FK | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515508RA | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | Call TI | | | 5962-8515508SA | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | Call TI | | | JM38510/50605BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | JM38510/50606BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | JM38510/50607BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | JM38510/50608BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | M38510/50605BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | M38510/50606BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | M38510/50607BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | M38510/50608BRA | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16L8-25CFN | ACTIVE | PLCC | FN | 20 | 46 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-245C-168 HR | | | TIBPAL16L8-25CJ | OBSOLETE | CDIP | J | 20 | | TBD | Call TI | Call TI | | | TIBPAL16L8-25CN | ACTIVE | PDIP | N | 20 | 20 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | TIBPAL16L8-30MFKB | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | | TIBPAL16L8-30MJ | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16L8-30MJB | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16L8-30MWB | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | N / A for Pkg Type | | | TIBPAL16R4-25CFN | ACTIVE | PLCC | FN | 20 | 46 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-245C-168 HR | | www.ti.com 25-Jan-2012 | Orderable Device | Status ⁽¹⁾ | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |-------------------|-----------------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | TIBPAL16R4-25CJ | OBSOLETE | CDIP | J | 20 | | TBD | Call TI | Call TI | | | TIBPAL16R4-25CN | ACTIVE | PDIP | N | 20 | 20 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | TIBPAL16R4-30MFKB | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | | TIBPAL16R4-30MJ | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16R4-30MJB | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16R4-30MWB | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | N / A for Pkg Type | | | TIBPAL16R6-25CFN | ACTIVE | PLCC | FN | 20 | 46 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-245C-168 HR | | | TIBPAL16R6-25CN | ACTIVE | PDIP | N | 20 | 20 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | TIBPAL16R6-30MFKB | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | | TIBPAL16R6-30MJ | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16R6-30MJB | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16R6-30MWB | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | N / A for Pkg Type | | | TIBPAL16R8-25CFN | ACTIVE | PLCC | FN | 20 | 46 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-3-245C-168 HR | | | TIBPAL16R8-25CN | ACTIVE | PDIP | N | 20 | 20 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | TIBPAL16R8-30MFKB | ACTIVE | LCCC | FK | 20 | 1 | TBD | POST-PLATE | N / A for Pkg Type | | | TIBPAL16R8-30MJB | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | TIBPAL16R8-30MWB | ACTIVE | CFP | W | 20 | 1 | TBD | Call TI | N / A for Pkg Type | | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. #### **PACKAGE OPTION ADDENDUM** 25-Jan-2012 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ### W (R-GDFP-F20) #### CERAMIC DUAL FLATPACK - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only. - E. Falls within Mil-Std 1835 GDFP2-F20 #### FK (S-CQCC-N**) #### LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a metal lid. - D. Falls within JEDEC MS-004 #### N (R-PDIP-T**) #### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. #### FN (S-PQCC-J**) #### 20 PIN SHOWN #### PLASTIC J-LEADED CHIP CARRIER NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-018 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. **Applications** TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: **Products** Wireless Connectivity #### Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** TI E2E Community Home Page www.ti.com/omap www.ti.com/wirelessconnectivity e2e.ti.com