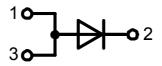


advanced

45 V 15 A


0.63 V

Schottky

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DSA 15 IM 45IB

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package:

 $V_{RRM} =$

TO-262 (I2Pak)

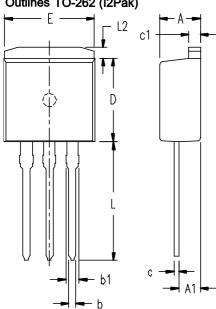
- Industry standard outline
- Epoxy meets UL 94V-0RoHS compliant

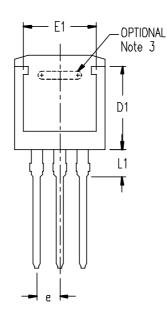
Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm-values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses

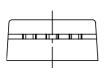
Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			45	V
I _R	reverse current	V _R = 45 V	T _{vJ} = 25 °C			0.3	mA
		$V_R = 45 V$	T_{VJ} = 125 °C			2.5	mA
V _F	forward voltage	I _F = 15 A	$T_{VJ} = 25 ^{\circ}\text{C}$			0.75	V
		$I_F = 30 A$				0.91	V
		I _F = 15 A	T 405 °C			0.63	V
		$I_F = 30 A$	$T_{VJ} = 125 ^{\circ}\text{C}$			0.79	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 155 °C			15	Α
V _{F0}	threshold voltage	calculation only	T _{vJ} = 175 °C			0.42	V
r _F	slope resistance	Calculation only				9.9	$\text{m}\Omega$
R _{thJC}	thermal resistance junction to case					1.75	K/W
T _{vJ}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		$T_c = 25 ^{\circ}C$			85	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	T _{VJ} = 45 °C			140	Α
C _J	junction capacitance	$V_R = V; f = 1 MHz$	$T_{VJ} = 25 ^{\circ}C$				pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = A; L = 100 \mu H$	$T_{VJ} = 25 ^{\circ}C$			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$	<u>'</u>			tbd	Α




advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink	(0.50		K/W	
$M_{\scriptscriptstyle D}$	mounting torque					Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	


^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-262 (I2Pak)

CVM	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
Α	.160	.190	4.06	4.83	
A1	.080	.110	2.03	2.79	
b	.025	.035	0.64	0.88	
Ь1	.025	.039	1.14	1.40	
С	.018	.025	0.46	0.64	
с1	.045	.055	1.14	1.40	
D	.340	.380	8,64	9.65	
D1	.270	.290	6.86	7.37	
Ε	.380	.405	9.65	10.29	
E1	.245	.320	6,22	8,13	
е	.100 BSC		2.54 BSC		
L	.500	.560	12.70	14.22	
L1	.100	.125	2.54	3.18	
L2	.040	.055	1.02	1.40	

- 1. This drawing will meet all dimensions requirement of JEDEC outline TO-262 AA.
- 2. All metal surface are matte pure tin plated except trimmed area.
- 3. Inter locking slot depends upon frame type.