CMOS Low Voltage 2Ω SPST Switches

FEATURES

1.8 V to 5.5 V single supply
2Ω (typ) on resistance
Low on-resistance flatness
-3 dB bandwidth > $200 \mathbf{~ M H z}$
Rail-to-rail operation
Fast switching times:
ton 18 ns
toff 12 ns
Typical power consumption < $0.01 \mu \mathrm{~W}$

TTL/CMOS compatible

APPLICATIONS

Battery powered systems

Communication systems
Sample hold systems
Audio signal routing

Video switching

Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG701/ADG702 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet high switching speed, low on resistance, and low leakage currents. In addition, -3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG701/ADG702 can operate from a single 1.8 V to 5.5 V supply, making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices.

Figure 1 shows that with a logic input of 1 , the switch of the ADG701 is closed, while that of the ADG702 is open. Each switch conducts equally well in both directions when on.

The ADG701/ADG702 are available in 5-lead SOT-23, 6-lead SOT-23, and 8-lead MSOP packages.

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT

Figure 1.

PRODUCT HIGHLIGHTS

1. 1.8 V to 5.5 V single-supply operation. The ADG701/ ADG702 offer high performance, including low on resistance and fast switching times, and are fully specified and guaranteed with 3 V and 5 V supply rails.
2. Very low Ron ($3 \Omega \max$ at $5 \mathrm{~V}, 5 \Omega$ max at 3 V). At 1.8 V operation, RoN is typically 40Ω over the temperature range.
3. On resistance flatness $\mathrm{R}_{\text {flat(on) }}(1 \Omega$ max).
4. -3 dB bandwidth $>200 \mathrm{MHz}$.
5. Low power dissipation. CMOS construction ensures low power dissipation.
6. Fast ton/toff.
7. Tiny 5-lead SOT-23, 6-lead SOT-23, and 8-lead MSOP packages.

ADG701/ADG702

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configurations and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits. 8
REVISION HISTORY
6/04-Data Sheet Changed from Rev. A to Rev. B
Updated Format Universal
Added 5-Lead SOT-23 Package Universal
Updated Outline Dimensions 10
Changes to Ordering Guide 11
8/98-Data Sheet Changed from Rev. 0 to Rev. A
Applications Information 9
ADG701/ADG702 Supply Voltages 9
On Response vs. Frequency 9
Off Isolation 9
Outline Dimensions 10
Ordering Guide 11

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$. Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Flatness (Rflation)	$\begin{aligned} & 2 \\ & 3 \\ & 0.5 \end{aligned}$	$0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}$ 4 1.0	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{s}=0 \mathrm{~V} \text { to } V_{D D}, I_{s}=-10 \mathrm{~mA} ; \text { Figure } 11 \\ & V_{S}=0 \mathrm{~V} \text { to } V_{D D}, I_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage, Is (OFF) Drain OFF Leakage, I_{D} (OFF) Channel ON Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; Figure } 12 \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; Figure } 12 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; Figure } 13 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current lind or linh^{2}	0.005	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection Off Isolation Bandwidth -3 dB C_{s} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	12 8 5 -55 -75 200 17 17 38	18 12	ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 17 \end{aligned}$
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^0]
ADG701/ADG702

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	B Version $-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Flatness (Rflation)	$\begin{aligned} & 3.5 \\ & 5 \\ & 1.5 \end{aligned}$	0 V to V_{DD} 6	V Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { Figure } 11 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is(OFF) Drain OFF Leakage $I_{0}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; Figure } 12 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \text {; Figure } 12 \\ & \mathrm{~V}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V} \text {; Figure } 13 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current lind or linh	0.005	2.0 0.4 ± 0.1	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection Off Isolation Bandwidth - 3 dB C_{s} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$	14 8 4 -55 -75 200 17 17 38	20 13	ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Figure } 14 \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{RS}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \text {; Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 17 \end{aligned}$
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +7 V
Analog, Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$
	or 30 mA, whichever
occurs first	
Continuous Current, S or D	30 mA
Peak Current, S or D	100 mA, pulsed at 1 ms,
	10% duty cycle max
Operating Temperature Range	
\quad Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package, Power Dissipation	315 mW
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
SOT-23 Package, Power Dissipation	282 mW
$\quad \theta_{\mathrm{JA}}$ Thermal Impedance	$229.6^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
ESD	2 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 4. Truth Table

ADG701 In	ADG702 In	Switch Condition
0	1	OFF
1	0	ON

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG701/ADG702

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 8-Lead MSOP

Figure 3. 6-Lead SOT-23

Figure 4. 5-Lead SOT-23

Table 5. Pin Descriptions

Term	Description
$V_{\text {DD }}$	Most positive power supply potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
Ron	Ohmic resistance between D and S.
Rflation)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
Is (OFF)	Source Leakage Current with the Switch OFF.
l_{D} (OFF)	Drain Leakage Current with the Switch OFF.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel Leakage Current with the Switch ON.
V_{D} (VS)	Analog Voltage on Terminals D and S.
C_{s} (OFF)	OFF Switch Source Capacitance.
C_{D} (OFF)	OFF Switch Drain Capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	ON Switch Capacitance.
ton	Delay between applying the digital control input and the output switching on. See Figure 14.
toff	Delay between applying the digital control input and the output switching off.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by -3 dBs .
On Response	The frequency response of the ON switch.
On Loss	The voltage drop across the ON switch seen in Figure 10 as the number of dBs the signal is from 0 dB at very low frequencies.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 8. Supply Current vs. Input Switching Frequency

Figure 9. Off Isolation vs. Frequency

Figure 10. On Response vs. Frequency

ADG701/ADG702

TEST CIRCUITS

Figure 11. On Resistance

Figure 12. Off Leakage

Figure 13. On Leakage

Figure 14. Switching Times

Figure 15. Charge Injection

Figure 16. Off Isolation

Figure 17. Bandwidth

APPLICATIONS INFORMATION

The ADG701/ADG702 belong to Analog Devices' new family of CMOS switches. This series of general-purpose switches have improved switching times, lower on resistance, higher bandwidth, low power consumption, and low leakage currents.

ADG701/ADG702 SUPPLY VOLTAGES

Functionality of the ADG701/ADG702 extends from 1.8 V to 5.5 V single supply, making the parts ideal for battery-powered instruments, where power efficiency and performance are important design parameters.

It is important to note that the supply voltage affects the input signal range, the on resistance, and the switching times of the part. The effects of the power supplies can be clearly seen in the Typical Performance Characteristics and the Specifications sections.

For $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ operation, Ros is typically 40Ω over the temperature range.

ON RESPONSE VS. FREQUENCY

Figure 18 illustrates the parasitic components that affect the ac performance of CMOS switches (a box surrounds the switch). Additional external capacitances further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

Figure 18. Switch Represented by Equivalent Parasitic Components
The transfer function that describes the equivalent diagram of the switch (Figure 18) is of the form (A)s shown below.

$$
A(s)=R_{T}\left[\frac{s\left(R_{O N} C_{D S}\right)+1}{s\left(R_{O N} C_{T} R_{T}\right)+1}\right]
$$

Where $C_{T}=C_{L O A D}+C_{D}+C_{D S}$.

The signal transfer characteristic is dependent on the switch channel capacitance, C_{Ds}. This capacitance creates a frequency zero in the numerator of the transfer function $\mathrm{A}(\mathrm{s})$. Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with $C_{D S}$ and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of $\mathrm{A}(\mathrm{s})$.

The dominant effect of the output capacitance, C_{D}, causes the pole breakpoint frequency to occur first. In order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The on response versus frequency for the ADG701/ADG702 can be seen in Figure 10.

OFF ISOLATION

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, $C_{D S}$, couples the input signal to the output load, when the switch is off, as shown in Figure 19.

Figure 19. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of $C_{D S}$, the larger the values of feedthrough produced. Figure 9 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz , the switch shows better than -75 dB isolation. Up to frequencies of 10 MHz , the off isolation remains better than -55 dB . As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest Cds possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$
A(s)=R_{T}\left[\frac{s\left(R_{L O A D} C_{D S}\right)+1}{s\left(R_{L O A D}\right)\left(C_{T}\right)+1}\right]
$$

ADG701/ADG702

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187AA

Figure 20. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
 Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-178AB

Figure 21. 6-Lead Plastic Surface Mount Package [SOT-23]
(RT-6)
Dimensions shown in inches and (millimeters)

Figure 22. 5-Lead Plastic Surface Mount Package [SOT-23]
(RJ-5)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Options	Brand ${ }^{1}$
ADG701BRJ-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRJ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRJ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S3B
ADG701BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S3B
ADG701BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S3B
ADG701BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S3B
ADG701BRT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRTZ-REEL2 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG701BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S3B
ADG702BRJ-500RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRJ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRJ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RJ-5	S4B
ADG702BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S4B
ADG702BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S4B
ADG702BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP (Small Outline)	RM-8	S4B
ADG702BRT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRT-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRT-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRTZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S4B
ADG702BRTZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOT-23 (Plastic Surface Mount)	RT-6	S4B

[^2]
ADG701/ADG702

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Brand = Due to package size limitations, these three characters represent the part number.
 ${ }^{2} Z=P b$-free part.

