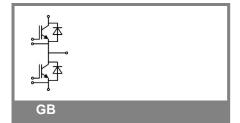


Trench IGBT Modules

SKM 100GB176D

Features


- Homogeneous Si
- Trench = Trenchgate technology
 V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives mains 575 -750 V AC
- · Public transport (auxiliary syst.

Absolute Maximum Ratings $T_{case} = 25^{\circ}C$, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1700	V	
I _C	T _j = 150 °C	T _c = 25 °C	125	Α	
		$T_c = 80 ^{\circ}C$	90	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		150	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 1200 V; $V_{GE} \le$	20 V; T _j = 125 °C	10	μs	
•	V _{CES} < 1700 V	·			
Inverse D	Diode				
I_{F}	T _j = 150 °C	$T_c = 25 ^{\circ}C$	100	Α	
		$T_c = 80 ^{\circ}C$	70	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		150	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	720	А	
Module			•		
I _{t(RMS)}			200	Α	
T _{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics T		T _{case} =	se = 25°C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3 \text{ mA}$		5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		13	16,7	mΩ
		T _j = 125°C		20	24	mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2	2,45	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,4	2,9	V
C _{ies}				5,7		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,28		nF
C _{res}				0,22		nF
Q_G	V _{GE} =-8V/+15V			620		nC
R_{Gint}	T _j = 25 °C			8,5		Ω
t _{d(on)}				280		ns
t _r	$R_{Gon} = 4.2 \Omega$	V _{CC} = 1200V		40		ns
E _{on}	di/dt = 1680 A/µs	I _C = 75A		44		mJ
t _{d(off)}	$R_{Goff} = 4.2 \Omega$	T _j = 125 °C		680		ns
t _f	di/dt = 490 A/μs	V _{GE} =-15V		140		ns
E_{off}		L _s = 20 nH		28,5		mJ
R _{th(j-c)}	per IGBT				0,24	K/W

Trench IGBT Modules

SKM 100GB176D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.

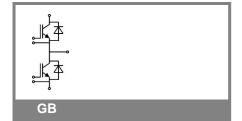
Characteristics						
Symbol	Conditions	ĺ	min.	typ.	max.	Units
Inverse D	iode					•
$V_F = V_{EC}$	$I_{Fnom} = 75 \text{ A}; V_{GE} = 0 \text{ V}$			1,6	1,9	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6	1,9	V
V_{F0}		T _j = 25 °C		1,1	1,3	V
		T _j = 125 °C		0,9	1,1	V
r _F		T _j = 25 °C		6,7	8	mΩ
		T _j = 125 °C		9,3	11	mΩ
I _{RRM}	I _F = 75 A	T _i = 125 °C		78,5		Α
Q_{rr}	di/dt = 1650 A/µs	L _S = 20 nH		29,6		μC
E _{rr}	$V_{GE} = -15V ; V_{CC} = 1200 $	V		21,4		mJ
$R_{th(j-c)D}$	per diode				0,45	K/W
Module						
L _{CE}					30	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

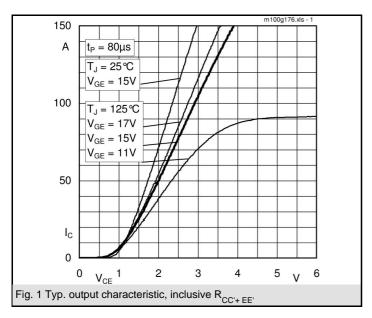
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

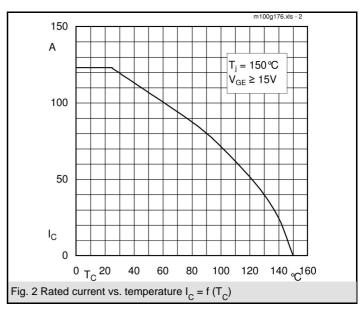
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

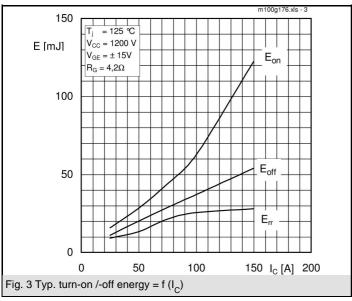
Trench IGBT Modules

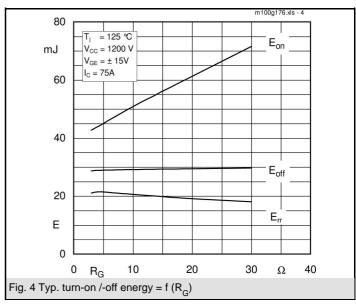
SKM 100GB176D

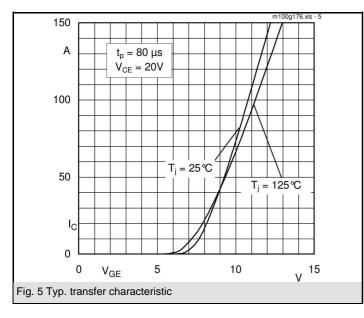

Features

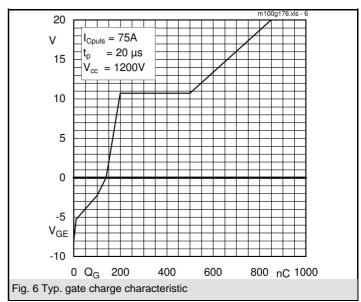

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

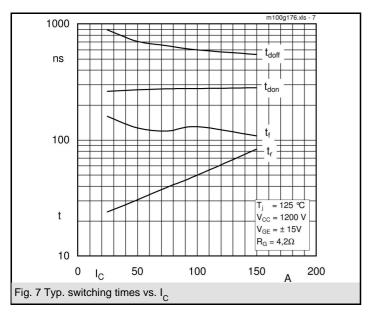

Typical Applications*

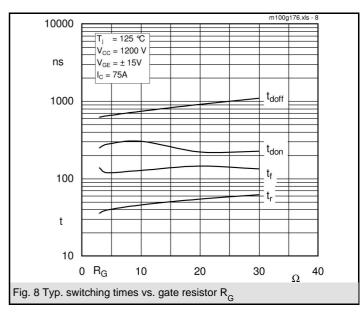

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.

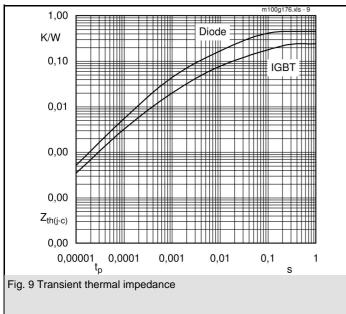

Z _{th}			
Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	160	mk/W
Ri	i = 2	60	mk/W
R_i	i = 3	16,5	mk/W
R _i	i = 4	3,5	mk/W
tau _i	i = 1	0,1056	s
tau _i	i = 2	0,009	s
tau _i	i = 3	0,0011	s
tau _i	i = 4	0,0005	s
Z R _i th(j-c)D	<u>.</u>		<u>.</u>
R _i	i = 1	270	mk/W
R_i	i = 2	139	mk/W
R_i	i = 3	37	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,0475	s
tau _i	i = 2	0,0104	s
tau _i	i = 3	0,0011	s
tau _i	i = 4	0,0003	s

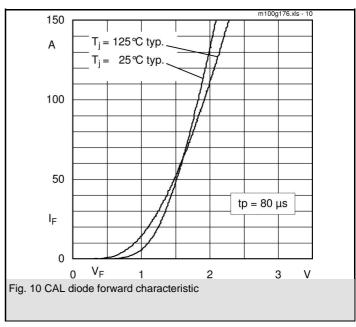


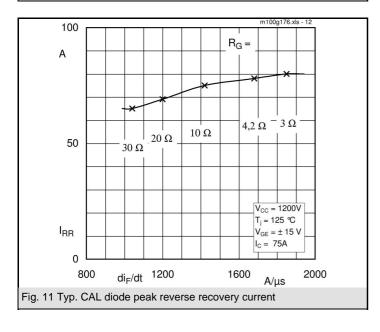


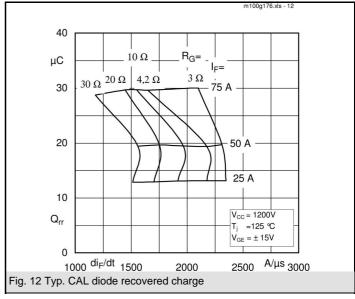


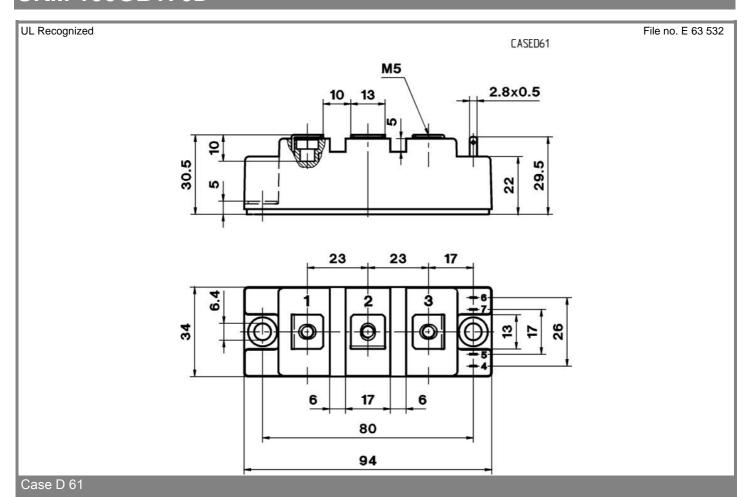


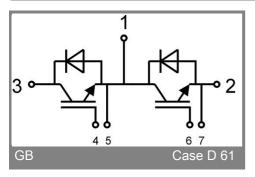












6 06-10-2009 NOS © by SEMIKRON