General Description

The MAX4230–MAX4234 single/dual/quad, high-outputdrive CMOS op amps feature 200mA of peak output current, rail-to-rail input, and output capability from a single 2.7V to 5.5V supply. These amplifiers exhibit a high slew rate of 10V/ μ s and a gain-bandwidth product (GBWP) of 10MHz. The MAX4230–MAX4234 can drive typical headset levels (32 Ω), as well as bias an RF power amplifier (PA) in wireless handset applications.

The MAX4230 comes in a tiny 5-pin SC70 package and the MAX4231, single with shutdown, is offered in the 6-pin SC70 package and a 1.5mm x 1.0mm x 0.5mm ultra-thin μ DFN package. The dual op-amp MAX4233 is offered in the space-saving 10-bump chip-scale package (UCSPTM), providing the smallest footprint area for a dual op amp with shutdown.

These op amps are designed to be part of the PA control circuitry, biasing RF PAs in wireless headsets. The MAX4231/MAX4233 offer a SHDN feature that drives the output low. This ensures that the RF PA is fully disabled when needed, preventing unconverted signals to the RF antenna.

The MAX4230 family offers low offsets, wide bandwidth, and high-output drive in a tiny 2.1mm x 2.0mm spacesaving SC70 package. These parts are offered over the automotive temperature range (-40°C to +125°C).

Applications

RF PA Biasing Controls in Handset Applications

Portable/Battery-Powered Audio Applications

Portable Headphone Speaker Drivers (32 Ω)

Audio Hands-Free Car Phones (Kits)

Laptop/Notebook Computers/TFT Panels

- Sound Ports/Cards
- Set-Top Boxes

Digital-to-Analog Converter Buffers

- Transformer/Line Drivers
- Motor Drivers

Selector Guide appears at end of data sheet. Pin Configurations appear at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- ♦ 30mA Output Drive Capability
- Rail-to-Rail Input and Output
- 1.1mA Supply Current per Amplifier
- ♦ 2.7V to 5.5V Single-Supply Operation
- 10MHz Gain-Bandwidth Product
- ♦ High Slew Rate: 10V/µs
- 100dB Voltage Gain (R_L = 100kΩ)
- 85dB Power-Supply Rejection Ratio
- No Phase Reversal for Overdriven Inputs
- Unity-Gain Stable for Capacitive Loads to 780pF

- Low-Power Shutdown Mode Reduces Supply Current to < 1µA
- Available in 5-Pin SC70 Package (MAX4230) and 6-Pin Thin µDFN Package (MAX4231)
- Available in 10-Bump UCSP Package (MAX4233)

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	top Mark
MAX4230AXK-T	-40°C to +125°C	5 SC70	ACS
MAX4230AUK-T	-40°C to +125°C	5 SOT23	ABZZ
MAX4231AXT-T	-40°C to +125°C	6 SC70	ABA
MAX4231AUT-T	-40°C to +125°C	6 SOT23	AAUV
MAX4231AYT+TG65	-40°C to +125°C	6 µDFN	+AI

Ordering Information continued at end of data sheet.

+Denotes a lead-free/RoHS-compliant package. T = Tape and reel.

Typical Operating Circuit

MAXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to V _{SS})
6-Pin μDFN (derate 2.1mW/°C above +70°C)170.2mW 8-Pin SOT23 (derate 8.9mW/°C above +70°C)714mW

8-Pin µMAX [®] (derate 4.5mW/°C above +70°C)
10-Pin µMAX (derate 5.6mW/°C above +70°C)444mW
10-Bump UCSP (derate 6.1mW/°C above +70°C)484mW
10-Pin TDFN (derate 24.4mW°C above +70°C)1951mW
14-Pin SO (derate 8.3mW/°C above +70°C)667mW
Operating Temperature Range40°C to +125°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Package power dissipation should also be observed.

µMAX is a registered trademark of Maxim Integrated Products, Inc.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = (V_{DD}/2), R_L = \infty$ connected to $(V_{DD}/2), V_{\overline{SHDN}} = V_{DD}, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS			
Operating Supply Voltage Range	V _{DD}	Inferred from PSRR test		2.7		5.5	V			
Input Offset Voltage	VOS						0.85	±6	mV	
Input Bias Current	Ι _Β	V _{CM} = V _{SS} to V	Vdd				50		рА	
Input Offset Current	los	$V_{CM} = V_{SS}$ to V	Vdd				50		рА	
Input Resistance	R _{IN}						1000		MΩ	
Common-Mode Input Voltage Range	V _{CM}	Inferred from CMRR test		V _{SS}		V _{DD}	V			
Common-Mode Rejection Ratio	CMRR	V _{SS} < V _{CM} < V	/DD			52	70		dB	
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 2.7 V$ to	5.5V			73	85		dB	
Shutdown Output Impedance	Rout	V _{SHDN} = 0V (N	V (Note 3)			10		Ω		
Output Voltage in Shutdown	VOUT(SHDN)	$V_{\overline{SHDN}} = 0V, F$	RL = 20	00Ω (Note 3)			68	120	mV	
	Avol	V _{SS} + 0.20V < V _{OUT} < V _{DD} - 0.20V		RL =	100k Ω		100			
Large-Signal Voltage Gain				RL =	2kΩ	85	98		dB	
		< VDD - 0.20V		RL =	200Ω	74	80			
		$R_L = 32\Omega$		VDD	- Voн		400	500	– mV	
				VOL	- V _{SS}		360	500		
Output Voltage Swing	Vour	D 0000		VDD	- V _{OH}		80	120		
Output voltage Swing	Vout	$R_L = 200\Omega$		VOL	- V _{SS}		70	120	IIIV	
		$R_L = 2k\Omega$		VDD	- V _{OH}		8	14		
		nL = 2k22		VOL	- V _{SS}		7	14		
		$V_{DD} = 2.7 V, V_I$	$IN = \pm 1$	00mV			70			
Output Source/Sink Current	Iout	$V_{DD} = 5V, V_{IN}$	$= \pm 100$	OmV			200		mA	
				0 71 /	V _{DD} - V _{OH}		128	200	<u> </u>	
		$I_L = 10 \text{mA}$	VDD =	2.7V	V _{OL} - V _{SS}		112	175		
Output Voltage					V _{DD} - V _{OH}		240	320	mV	
		$I_L = 30 \text{mA}$	$V_{DD} = 5V$		V _{OL} - V _{SS}		224	300	1	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = (V_{DD}/2), R_L = \infty$ connected to $(V_{DD}/2), V_{\overline{SHDN}} = V_{DD}, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Quiescent Supply Current (per	laa	$V_{DD} = 5.5V, V_{CM} = V_{DD}$	2		1.2	2.3	mA
Amplifier)	IDD	$V_{DD} = 2.7V, V_{CM} = V_{DD}$	2		1.1	2.0	ША
Shutdown Supply Current (per			$V_{DD} = 5.5V$		0.5	1	
Amplifier) (Note 3)	IDD(SHDN)	$V_{\overline{SHDN}} = 0V, R_{L} = \infty$	$V_{DD} = 2.7V$		0.1	1	μA
CHDN Logic Threshold (Note 2)		Shutdown mode			V _{SS} + 0.3	}	V
SHDN Logic Threshold (Note 3)		Normal mode			V _{DD} - 0.3		V
SHDN Input Bias Current		$V_{SS} < V_{\overline{SHDN}} < V_{DD}$ (No	e 3)		50		рА

DC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = (V_{DD}/2), R_L = \infty$ connected to $(V_{DD}/2), V_{\overline{SHDN}} = V_{DD}, T_A = -40$ to +125°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL		CONDITIONS		MIN	ТҮР	MAX	UNITS
Operating Supply Voltage Range	V _{DD}	Inferred from	PSRR test		2.7		5.5	V
Input Offset Voltage	Vos						±8	mV
Offset-Voltage Tempco	$\Delta V_{OS} / \Delta T$					±3		µV/°C
Common-Mode Input Voltage Range	VCM	Inferred from	CMRR test		V _{SS}		V _{DD}	V
Common-Mode Rejection Ratio	CMRR	$V_{SS} < V_{CM} <$	V _{DD}		46			dB
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 2.7 V to$	o 5.5V		70			dB
Output Voltage in Shutdown	VOUT(SHDN)	$V_{\overline{SHDN}} < 0V,$	$R_L = 200\Omega$ (No	te 3)			150	mV
	A. ().	V _{SS} + 0.2V < V _{DD} - 0.2V		$R_L = 2k\Omega$	76			dB
Large-Signal Voltage Gain	Avol	VSS + 0.2V <	VDD - 0.2V	$R_L = 200\Omega$	67			UD
		$R_{I} = 32\Omega, T_{A}$. 9590	V _{DD} - V _{OH}			650	
		$n_{\rm L} = 3232, 1 {\rm A}$	= +05 C	V _{OL} - V _{SS}			650	I
Output Voltage Swing	\/	D. 2000		V _{DD} - V _{OH}			150	mV
Output Voltage Swing	V _{OUT}	$R_{L} = 200\Omega$		Vol - Vss			150	IIIV
				V _{DD} - V _{OH}			20	
		$R_L = 2k\Omega$		Vol - Vss			20	Ī
		10	N/ 0.7\/	V _{DD} - V _{OH}			250	
		$I_L = 10mA$	$V_{DD} = 2.7V$	Vol - Vss			230	1
Output Voltage		I _L = 30mA, T _A = -40°C	V _{DD} = 5V	V _{DD} - V _{OH}			400	mV
		to +85°C	v UU - 3v	V _{OL} - V _{SS}			370	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = (V_{DD}/2), R_L = \infty$ connected to $(V_{DD}/2), V_{SHDN} = V_{DD}, T_A = -40$ to +125°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
Quiescent Supply Current		$V_{DD} = 5.5V$, $V_{CM} = V_{DD}/$	2			2.8	mA
(per Amplifier)	IDD	$V_{DD} = 2.7V, V_{CM} = V_{DD}/$	2			2.5	MA
Shutdown Supply Current			$V_{DD} = 5.5V$			2.0	
(per Amplifier) (Note 3)	IDD(SHDN)	$V_{\overline{SHDN}} < 0V, R_L = \infty$	$V_{DD} = 2.7V$			2.0	μA

AC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = (V_{DD}/2), R_L = \infty$ connected to $(V_{DD}/2), V_{SHDN} = V_{DD}, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Gain-Bandwidth Product	GBWP	$V_{CM} = V_{DD}/2$	10	MHz
Full-Power Bandwidth	FPBW	$V_{OUT} = 2V_{P-P}, V_{DD} = 5V$	0.8	MHz
Slew Rate	SR		10	V/µs
Phase Margin	PM		70	Degrees
Gain Margin	GM		15	dB
Total Harmonic Distortion Plus Noise	THD+N	f = 10kHz, V _{OUT} = 2V _{P-P} , A _{VCL} = 1V/V	0.0005	%
Input Capacitance	CIN		8	pF
Veltage Neige Depaity		f = 1kHz	15	nV/√Hz
Voltage-Noise Density	en	f = 10kHz	12	
Channel-to-Channel Isolation		$f = 1 \text{kHz}, R_L = 100 \text{k}\Omega$	125	dB
Capacitive-Load Stability		A _{VCL} = 1V/V, no sustained oscillations	780	рF
Shutdown Time	t SHDN	(Note 3)	1	μs
Enable Time from Shutdown	t ENABLE	(Note 3)	1	μs
Power-Up Time	ton		5	μs

Note 2: All units 100% tested at +25°C. All temperature limits are guaranteed by design.

Note 3: SHDN logic parameters are for the MAX4231/MAX4233 only.

Typical Operating Characteristics

(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = V_{DD}/2, R_L = ∞, connected to V_{DD}/2, V_{SHDN} = V_{DD}, T_A = +25°C, unless otherwise noted.)

SUPPLY CURRENT vs. TEMPERATURE (SHDN = LOW)

FREQUENCY (Hz)

MAX4230-MAX4234

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = V_{DD}/2, R_{L} = \infty$, connected to $V_{DD}/2, V_{SHDN} = V_{DD}, T_{A} = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

MAX4230-MAX4234

Typical Operating Characteristics (continued)

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = V_{DD}/2, V_{OUT} = V_{DD}/2, R_L = \infty$, connected to $V_{DD}/2, V_{SHDN} = V_{DD}, T_A = +25^{\circ}C$, unless otherwise noted.)

LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)

OUTPUT CURRENT vs. OUTPUT VOLTAGE (SOURCING, $V_{DD} = 5.0V$)

MAXIM

OUTPUT CURRENT vs. OUTPUT VOLTAGE (SOURCING, $V_{DD} = 2.7V$)

OUTPUT CURRENT vs. OUTPUT VOLTAGE (SINKING, V_{DD} = 5.0V)

OUTPUT CURRENT vs. OUTPUT VOLTAGE (SINKING, $V_{DD} = 2.7V$)

INPUT VOLTAGE NOISE vs. Frequency

7

MAX4230-MAX4234

MAX4230-MAX4234

		P	IN				
MAX4230 SOT23/ SC70	MAX4231 SOT23/ SC70/µDFN	MAX4232 SOT23/ μMAX	MAX4233 µMAX/ TDFN	MAX4233 UCSP	MAX4234T SSOP/ SO	NAME	FUNCTION
1	1			_	_	IN+	Noninverting Input
2	2	4	4	B4	11	V _{SS}	Negative Supply Input. Connect to ground for single-supply operation.
3	3			_	_	IN-	Inverting Input
4	4			—	—	OUT	Amplifier Output
5	6	8	10	B1	4	V _{DD}	Positive Supply Input
	5		5, 6	C4, A4		SHDN, SHDN1, SHDN2	Shutdown Control. Tie to high for normal operation.
_	_	3	3	C3	3	IN1+	Noninverting Input to Amplifier 1
—	_	2	2	C2	2	IN1-	Inverting Input to Amplifier 1
—	—	1	1	C1	1	OUT1	Amplifier 1 Output
—	_	5	7	A3	5	IN2+	Noninverting Input to Amplifier 2
—	_	6	8	A2	6	IN2-	Inverting Input to Amplifier 2
—	_	7	9	A1	7	OUT2	Amplifier 2 Output
_	_	_	_	_	10, 12	IN3+, IN4+	Noninverting Input to Amplifiers 3 and 4
_				_	9, 13	IN3-, IN4-	Inverting Input to Amplifiers 3 and 4
_	_			_	8, 14	OUT3, OUT4	Amplifiers 3 and 4 Outputs

Detailed Description

Rail-to-Rail Input Stage

The MAX4230–MAX4234 CMOS operational amplifiers have parallel-connected n- and p-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (VSS + 1.2V), and the p-channel stage is active for common-mode input voltages typically less than (V_{DD} - 1.2V).

Applications Information

Package Power Dissipation

Warning: Due to the high output current drive, this op amp can exceed the absolute maximum power-dissipation rating. As a general rule, as long as the peak current is less than or equal to 40mA, the maximum package power dissipation is not exceeded for any of the package types offered. There are some exceptions to this rule, however. The absolute maximum power-dissipation rating of each package should always be verified using the following equations. The equation below gives an approximation of the package power dissipation:

$$P_{IC(DISS)} \cong V_{RMS} I_{RMS} COS \theta$$

where:

 V_{RMS} = RMS voltage from V_{DD} to V_{OUT} when sourcing current and RMS voltage from V_{OUT} to V_{SS} when sinking current.

 I_{RMS} = RMS current flowing out of or into the op amp and the load.

 θ = phase difference between the voltage and the current. For resistive loads, COS θ = 1.

Pin Description

Figure 1. MAX4230/MAX4231 Used in Single-Supply Operation Circuit Example

For example, the circuit in Figure 1 has a package power dissipation of 196mW:

$$RMS \cong (V_{DD} - V_{DC}) + \frac{V_{PEAK}}{\sqrt{2}}$$
$$= 3.6V - 1.8V + \frac{1.0V}{\sqrt{2}} = 2.507V_{RMS}$$
$$I_{RMS} \cong I_{DC} + \frac{I_{PEAK}}{\sqrt{2}} = \frac{1.8V}{32\Omega} + \frac{1.0V/32\Omega}{\sqrt{2}}$$
$$= 78.4 \text{mA}_{RMS}$$

where:

 V_{DC} = the DC component of the output voltage.

 I_{DC} = the DC component of the output current.

 V_{PEAK} = the highest positive excursion of the AC component of the output voltage.

 $\mathsf{I}_{\mathsf{PEAK}}$ = the highest positive excursion of the AC component of the output current.

Therefore:

$$P_{IC(DISS)} = V_{RMS} I_{RMS} COS \theta$$

Adding a coupling capacitor improves the package power dissipation because there is no DC current to the load, as shown in Figure 2:

$$V_{\text{RMS}} \cong \frac{V_{\text{PEAK}}}{\sqrt{2}}$$
$$= \frac{1.0V}{\sqrt{2}} = 0.707 V_{\text{RMS}}$$
$$I_{\text{RMS}} \cong I_{\text{DC}} + \frac{I_{\text{PEAK}}}{\sqrt{2}} = 0A + \frac{1.0V/32\Omega}{\sqrt{2}}$$
$$= 22.1 \text{mA}_{\text{RMS}}$$

Therefore:

$$P_{IC(DISS)} = V_{RMS} I_{RMS} COS \theta$$

= 15.6mW

If the configuration in Figure 1 were used with all four of the MAX4234 amplifiers, the absolute maximum powerdissipation rating of this package would be exceeded (see the *Absolute Maximum Ratings* section).

60mW Single-Supply Stereo Headphone Driver

Two MAX4230/MAX4231s can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 2 can deliver 60mW per channel with 1% distortion from a single 5V supply.

The input capacitor (C_{IN}), in conjunction with R_{IN} , forms a highpass filter that removes the DC bias from the incoming signal. The -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$

///XI//

Figure 3. Dual MAX4230/MAX4231 Bridge Amplifier for 200mW at 3V

Choose gain-setting resistors R_{IN} and R_F according to the amount of desired gain, keeping in mind the maximum output amplitude. The output coupling capacitor, C_{OUT} , blocks the DC component of the amplifier output, preventing DC current flowing to the load. The output capacitor and the load impedance form a highpass filer with the -3dB point determined by:

$$f_{-3dB} = \frac{1}{2\pi R_L C_{OUT}}$$

For a 32Ω load, a 100µF aluminum electrolytic capacitor gives a low-frequency pole at 50Hz.

Bridge Amplifier

The circuit shown in Figure 3 uses a dual MAX4230 to implement a 3V, 200mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single op-amp speaker driver when single-supply operation is necessary. Voltage gain is set to 10V/V; however, it can be changed by adjusting the $82k\Omega$ resistor value.

Rail-to-Rail Input Stage

The MAX4230–MAX4234 CMOS op amps have parallelconnected n- and p-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (Vss + 1.2V), and the p-channel stage is active for common-mode input voltages typically less than (VDD -1.2V).

Figure 4. Rail-to-Rail Input/Output Range

Rail-to-Rail Output Stage

The minimum output is within millivolts of ground for single-supply operation, where the load is referenced to ground (Vss). Figure 4 shows the input voltage range and the output voltage swing of a MAX4230 connected as a voltage follower. The maximum output voltage swing is load dependent; however, it is guaranteed to be within 500mV of the positive rail (V_{DD} = 2.7V) even with maximum load (32 Ω to ground).

Observe the *Absolute Maximum Ratings* for power dissipation and output short-circuit duration (10s, max) because the output current can exceed 200mA (see the *Typical Operating Characteristics*.)

Input Capacitance

One consequence of the parallel-connected differential input stages for rail-to-rail operation is a relatively large input capacitance C_{IN} (5pF typ). This introduces a pole at frequency ($2\pi R'C_{IN}$)-1, where R' is the parallel combination of the gain-setting resistors for the inverting or noninverting amplifier configuration (Figure 5). If the pole frequency is less than or comparable to the unity-gain bandwidth (10MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10MHz when R' = $2k\Omega$. To maximize stability, R' << $2k\Omega$ is recommended.

M/IXI/M

Figure 5. Inverting and Noninverting Amplifiers with Feedback Compensation

To improve step response when $\mathsf{R'}>2k\Omega,$ connect small capacitor C_f between the inverting input and output. Choose C_f as follows:

$C_{f} = 8(R / R_{f}) [pf]$

where R_f is the feedback resistor and R is the gain-setting resistor (Figure 5).

Driving Capacitive Loads

The MAX4230–MAX4234 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 780pF. Figure 6 is a graph of the stable operating region for various capacitive loads vs. resistive loads. Figures 7 and 8 show the transient response with excessive capacitive loads (1500pF), with and without the addition of an isolation resistor in series with the output. Figure 9 shows a typical noninverting capacitive-load-driving circuit in the unity-gain configuration.

Figure 6. Capacitive-Load Stability

Figure 7. Small-Signal Transient Response with Excessive Capacitive Load

Figure 8. Small-Signal Transient Response with Excessive Capacitive Load with Isolation Resistor

MAX4230-MAX4234

Figure 9. Capacitive-Load-Driving Circuit

Figure 10. Shutdown Output Voltage Enable/Disable

The resistor improves the circuit's phase margin by isolating the load capacitor from the op amp's output.

Power-Up and Shutdown Modes

The MAX4231/MAX4233 have a shutdown option. When the shutdown pin (SHDN) is pulled low, supply current drops to 0.5µA per amplifier ($V_{DD} = 2.7V$), the amplifiers are disabled, and their outputs are driven to V_{SS}. Since the outputs are actively driven to V_{SS} is shutdown, any pullup resistor on the output causes a current drain from the supply. Pulling SHDN high enables the amplifier. In the dual MAX4233, the two amplifiers shut down independently. Figure 10 shows the MAX4231-MAX4234 typically settle within 5µs after power-up. Figures 11 and 12 show I_{DD} to a shutdown plus and voltage power-up cycle.

Figure 11. Shutdown Enable/Disable Supply Current

Figure 12. Power-Up/Down Supply Current

Selector Guide

PART	AMPS PER PACKAGE	SHUTDOWN MODE
MAX4230	Single	—
MAX4231	Single	Yes
MAX4232	Dual	—
MAX4233	Dual	Yes
MAX4234	Quad	—

When exiting shutdown, there is a 6µs delay before the amplifier's output becomes active (Figure 10).

Pin Configurations

\AX4230-MAX4234

Power Supplies and Layout

The MAX4230-MAX4234 can operate from a single 2.7V to 5.5V supply, or from dual ±1.35V to ±2.5V supplies. For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the op amps' inputs and outputs. Decrease stray capacitance by placing external components close to the op amps' pins, minimizing trace and lead lengths.

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	top Mark
Max4232 AKA+T	-40°C to +125°C	8 SOT23-8	AAKW
MAX4232AUA+T	-40°C to +125°C	8 µMAX-8	_
MAX4233AUB+T	-40°C to +125°C	10 µMAX-10	_
MAX4233ABC+T	-40°C to +125°C	10 UCSP-10	ABE
MAX4233ATB+T	-40°C to +125°C	10 TDFN-EP*	+AQH
MAX4234AUD	-40°C to +125°C	14 TSSOP	_
MAX4234ASD	-40°C to +125°C	14 SO	_

+Denotes a lead-free/RoHS-compliant package.

T = Tape and reel.

*EP = Exposed pad.

Chip Information

MAX4230 TRANSISTOR COUNT: 230 MAX4231 TRANSISTOR COUNT: 230 MAX4232 TRANSISTOR COUNT: 462 MAX4233 TRANSISTOR COUNT: 462 MAX4234 TRANSISTOR COUNT: 924

///XI///

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

_Package Information (continued)

_Package Information (continued)

Package Information (continued)

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

NOTES:

-DR

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- EAD SURFACE.
- 3. PACKAGE DUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR, MOLD FLASH, PROTRUSION OR METAL BURR SHOULD NOT EXCEED 0.25mm.
- 4. PACKAGE DUTLINE INCLUSIVE OF SOLDER PLATING.
- 5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT. (SEE EXAMPLE TOP MARK)
- 6. PIN 1 I.D. DOT IS 0.3mm Ø MIN. LOCATED ABOVE PIN 1.
- 7. MEETS JEDEC MO178, VARIATION AB.
- SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEADTIP.
- 9. LEAD TO BE COPLANAR WITHIN 0.1mm.
- 10. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- 11. MARKING IS FOR PACKAGE DRIENTATION REFERENCE ONLY.

SYMBOL	MIN	NOMINAL	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
С	0.08	0.15	0.20
D	2.80	2.90	3.00
Е	2.60	2.80	3.00
E1	1.50	1.625	1.75
Г	0.35	0.45	0.60
L1		0.60 REF	-
el		1.90 BSC	
e		0.95 BS0	
۵	0*	2.5*	10*
	PKG	CODES	
U6 SN-1,	U6CN-	-4, U6C- 2, U6S-3, , U6FH-6	

	-			
		\$ <i>/N/</i> JX		V
	PACKAGE (DUTLINE, SOT 6L BODY		
AWING NOT TO SCALE-	APPROVAL.	21-0058	REV.	2/2

M/IXI/M

_Package Information (continued)

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

_Package Information (continued)

_Package Information (continued)

Package Information (continued)

COMMON	DIMENS	SIONS		PACKAGE VA	RIATI	IONS						
SYMBOL	MIN.	MAX.		PKG. CODE	N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e	1
А	0.70	0.80		T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229/WEEA	0.40±0.05	1.90 REF	1
D	2.90	3.10		T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	1
E	2.90	3.10		T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	1
A1	0.00	0.05		T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF	7
L	0.20	0.40		T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229/WEED-3	0.25±0.05	2.00 REF	7
k	0.25	MIN.		T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	1
A2	0.20	REF.		T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	1
				. ANGLES IN		REES.						
1. ALL [2. COPL 3. WARP 4. PACK 5. DRAW 6. "N" [7. NUME	ANARITY AGE SH AGE LEI ING CO S THE BER OF	shall NGTH/P NFORMS TOTAL N LEADS	NOT EXC T EXCEEL ACKAGE V TO JEDE IUMBER C SHOWN A	CEED 0.08 m 0.10 mm. VIDTH ARE CO	m. DNSID XCEP EREN	DERED AS S T DIMENSIO CE ONLY.	NS "D2" AN		C(S). ND T1433-1 & T		4/1×	
1. ALL [2. COPL 3. WARP 4. PACK 5. DRAW 6. "N" [7. NUME	ANARITY AGE SH AGE LEI ING CO S THE BER OF	shall NGTH/P NFORMS TOTAL N LEADS	NOT EXC T EXCEEL ACKAGE V TO JEDE IUMBER C SHOWN A	XEED 0.08 m 0 0.10 mm. VIDTH ARE CO EC MO229, E NF LEADS. NRE FOR REF	m. DNSID XCEP EREN	DERED AS S T DIMENSIO CE ONLY.	NS "D2" AN		ND T1433-1 & T	OUTLINE,	6,8,10 & 1 1), 3×3×0.8	L4L,

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

M/IXI/M

_Package Information (continued)

TABLE 1 Transla	tion Table (or Calendar	Year Co	nde					
Calendar Year		2007 2008	2009	2010 201		2013	2014		
			\geq						
Legend: Mar	ked with bar	Blank	space – n	no bar requ	Ired				
<u>TABLE 2</u> Transla	tion Table f	or Payweek	Binary C	Coding					
Payweek	06-11 12-1	18-23 24-2	9 30-35	36-41 42-	47 48-51	52-05			
						X			
	ΠΠ	X	Π	X	X	Π			
	Ī Ī	ΠΪ	X	ΠΪ	X	X			
	ĪŌ	ŌŌ	X		Ō	Ō			
Legend: Mari	ked with bar	Blank	space – n	no bar requ	ired				
						Г	48.48		
							PACKAGE D	UTLINE THIN LGA, 1.5×1.0	x0.5mm
-DRAWING NOT TO SCAL	.E-						PROVAL	DOCUMENT CONTROL NO. 21-0190	B 22

_Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
7	7/08	Added 6-pin µDFN package for the MAX4231	1, 2, 8, 13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2008 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.

_ 26