High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Abstract

General Description The MAX4230-MAX4234 single/dual/quad, high-outputdrive CMOS op amps feature 200 mA of peak output current, rail-to-rail input, and output capability from a single 2.7 V to 5.5 V supply. These amplifiers exhibit a high slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ and a gain-bandwidth product (GBWP) of 10 MHz . The MAX4230-MAX4234 can drive typical headset levels (32Ω), as well as bias an RF power amplifier (PA) in wireless handset applications. The MAX4230 comes in a tiny 5-pin SC70 package and the MAX4231, single with shutdown, is offered in the 6 -pin SC70 package and a $1.5 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ ultra-thin μ DFN package. The dual op-amp MAX4233 is offered in the space-saving 10-bump chip-scale package (UCSP ${ }^{\text {TM }}$), providing the smallest footprint area for a dual op amp with shutdown. These op amps are designed to be part of the PA control circuitry, biasing RF PAs in wireless headsets. The MAX4231/MAX4233 offer a SHDN feature that drives the output low. This ensures that the RF PA is fully disabled when needed, preventing unconverted signals to the RF antenna. The MAX4230 family offers low offsets, wide bandwidth, and high-output drive in a tiny $2.1 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ spacesaving SC70 package. These parts are offered over the automotive temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

Applications

RF PA Biasing Controls in Handset Applications Portable/Battery-Powered Audio Applications Portable Headphone Speaker Drivers (32 2) Audio Hands-Free Car Phones (Kits) Laptop/Notebook Computers/TFT Panels
Sound Ports/Cards
Set-Top Boxes
Digital-to-Analog Converter Buffers Transformer/Line Drivers
Motor Drivers

Selector Guide appears at end of data sheet. Pin Configurations appear at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- 30mA Output Drive Capability
- Rail-to-Rail Input and Output
- 1.1mA Supply Current per Amplifier
- 2.7V to 5.5V Single-Supply Operation
- 10MHz Gain-Bandwidth Product
- High Slew Rate: $10 \mathrm{~V} / \mathrm{\mu s}$
- 100dB Voltage Gain (RL=100k Ω)
- 85dB Power-Supply Rejection Ratio
- No Phase Reversal for Overdriven Inputs
- Unity-Gain Stable for Capacitive Loads to 780pF
- Low-Power Shutdown Mode Reduces Supply Current to $<1 \mu \mathrm{~A}$
- Available in 5-Pin SC70 Package (MAX4230) and 6-Pin Thin μ DFN Package (MAX4231)
- Available in 10-Bump UCSP Package (MAX4233)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4230AXK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SC 70	ACS
MAX4230AUK-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5 SOT23	ABZZ
MAX4231AXT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SC 70	ABA
MAX4231AUT-T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6 SOT23	AAUV
MAX4231AYT + TG65	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$6 \mu \mathrm{DFN}$	+ AI

Ordering Information continued at end of data sheet.
+Denotes a lead-free/RoHS-compliant package.
T = Tape and reel.
Typical Operating Circuit

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

ABSOLUTE MAXIMUM RATINGS

8-Pin μ MAX ${ }^{\text {® }}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	C) 362 mW
10-Pin $\mu \mathrm{MAX}$ (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)) 444 mW
10-Bump UCSP (derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	$\left.0^{\circ} \mathrm{C}\right)484 \mathrm{~mW}$
10-Pin TDFN (derate $24.4 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	C) 1951 mW
14-Pin SO (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	.. 667 mW
Operating Temperature Range-40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range65	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$

8 -Pin μ MAX ${ }^{\circledR}$ (derate $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 362 mW -Pin μ MAX (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 444 mW
10-Bump UCSP (derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 484 mW
10-Pin TDFN (derate $24.4 \mathrm{~mW}{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1951 mW
(derate 8.3nW/C above $+70^{\circ}$)
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: Package power dissipation should also be observed.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{R}_{\mathrm{L}}=\infty\right.$ connected to $\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5} \mathbf{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	VDD	Inferred from PSRR test				2.7		5.5	V
Input Offset Voltage	Vos						0.85	± 6	mV
Input Bias Current	IB	$V_{C M}=V_{S S}$ to $V_{\text {DD }}$					50		pA
Input Offset Current	los	$V_{C M}=V_{S S}$ to $V_{D D}$					50		pA
Input Resistance	RIN						1000		$\mathrm{M} \Omega$
Common-Mode Input Voltage Range	VCM	Inferred from CMRR test				VSS		VDD	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{DD}}$				52	70		dB
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V				73	85		dB
Shutdown Output Impedance	Rout	V $\overline{\text { SHDN }}=0 \mathrm{~V}$ (Note 3)					10		Ω
Output Voltage in Shutdown	Vout($\overline{\text { SHDN }}$)	$V \overline{S H D N}=0 V, \mathrm{R}_{\mathrm{L}}=200 \Omega$ (Note 3)					68	120	mV
Large-Signal Voltage Gain	Avol	$\begin{aligned} & V_{S S}+0.20 \mathrm{~V}<V_{\text {OUT }} \\ & <V_{D D}-0.20 \mathrm{~V} \end{aligned}$		$\mathrm{RL}=100 \mathrm{k} \Omega$		100			dB
				$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		85	98		
				$\mathrm{R}_{\mathrm{L}}=200 \Omega$		74	80		
Output Voltage Swing	Vout	$R \mathrm{~L}=32 \Omega$		$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {OH }}$			400	500	mV
				VOL - V ${ }_{\text {SS }}$			360	500	
		$R \mathrm{~L}=200 \Omega$		VDD	VOH		80	120	
				VOL	$\mathrm{V}_{\text {SS }}$		70	120	
		$R \mathrm{~L}=2 \mathrm{k} \Omega$		VDD	VOH		8	14	
				VOL	VSS		7	14	
Output Source/Sink Current	Iout	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$					70		mA
		$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV}$					200		
Output Voltage		$\mathrm{L}=10 \mathrm{~mA}$	$V_{D D}=2.7 \mathrm{~V}$		VDD - $\mathrm{V}_{\text {OH }}$		128	200	mV
					VOL - VSS		112	175	
		L L $=30 \mathrm{~mA}$	$V_{D D}=5 \mathrm{~V}$		VDD - $\mathrm{V}_{\text {OH }}$		240	320	
					VOL - VSS		224	300	

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{R}_{\mathrm{L}}=\infty\right.$ connected to $\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Quiescent Supply Current (per Amplifier)	IDD	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2$			1.2	2.3	mA
		$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2$			1.1	2.0	
Shutdown Supply Current (per Amplifier) (Note 3)	IDD($\overline{\text { SHDN }})$	$V \overline{S H D N}=0 \mathrm{~V}, \mathrm{RL}=\infty$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		0.5	1	$\mu \mathrm{A}$
			$V_{D D}=2.7 \mathrm{~V}$		0.1	1	
$\overline{\text { SHDN Logic Threshold (Note 3) }}$		Shutdown mode			$\mathrm{V}_{\text {SS }}+0$		V
		Normal mode			VDD -0		
$\overline{\text { SHDN }}$ Input Bias Current		$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {SHDN }}<\mathrm{V}_{\text {DD }}$ (Note 3)			50		pA

DC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{R}_{\mathrm{L}}=\infty\right.$ connected to $\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{V}_{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0}$ to $\boldsymbol{+ 1 2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 2)

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{R}_{\mathrm{L}}=\infty\right.$ connected to $\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{V}_{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0}$ to $\boldsymbol{+ 1 2 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | ---: | ---: | :---: | UNITS.

AC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{R}_{\mathrm{L}}=\infty\right.$ connected to $\left(\mathrm{V}_{\mathrm{DD}} / 2\right), \mathrm{V}_{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathbf{T}_{\mathbf{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted.$)$ (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Gain-Bandwidth Product	GBWP	$V_{C M}=V_{D D} / 2$	10		MHz
Full-Power Bandwidth	FPBW	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }} \mathrm{V}_{\text {DD }}=5 \mathrm{~V}$	0.8		MHz
Slew Rate	SR		10		V/us
Phase Margin	PM		70		Degrees
Gain Margin	GM		15		dB
Total Harmonic Distortion Plus Noise	THD + N	$f=10 \mathrm{kHz}, \mathrm{V}$ OUT $=2 \mathrm{VP-P}, \mathrm{AVCL}=1 \mathrm{~V} / \mathrm{V}$	0.0005		\%
Input Capacitance	$\mathrm{CIN}^{\text {N }}$		8		pF
Voltage-Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$	15		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=10 \mathrm{kHz}$	12		
Channel-to-Channel Isolation		$f=1 \mathrm{kHz}, \mathrm{RL}=100 \mathrm{k} \Omega$	125		dB
Capacitive-Load Stability		AvCL $=1 \mathrm{~V} / \mathrm{V}$, no sustained oscillations	780		pF
Shutdown Time	tSHDN	(Note 3)	1		$\mu \mathrm{s}$
Enable Time from Shutdown	tenable	(Note 3)	1		$\mu \mathrm{S}$
Power-Up Time	ton		5		$\mu \mathrm{s}$

Note 2: All units 100% tested at $+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 3: $\overline{\text { SHDN }}$ logic parameters are for the MAX4231/MAX4233 only

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Typical Operating Characteristics

$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty\right.$, connected to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY

GAIN AND PHASE vs. FREQUENCY

SUPPLY CURRENT vs. TEMPERATURE
(SHDN = LOW)

$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty\right.$, connected to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V} \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted $)$

SUPPLY CURRENT PER AMPLIFIER vs. COMMON-MODE VOLTAGE

INPUT OFFSET VOLTAGE
vs. TEMPERATURE

INPUT OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE

TOTAL HARMONIC DISTORTION PLUS NOISE vs. FREQUENCY

OUTPUT SWING HIGH
vs. TEMPERATURE

SUPPLY CURRENT PER AMPLIFIER vs. COMMON-MODE VOLTAGE

TOTAL HARMONIC DISTORTION PLUS NOISE vs. PEAK-TO-PEAK OUTPUT VOLTAGE

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Typical Operating Characteristics (continued)
$\left(V_{D D}=2.7 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{C M}=\mathrm{V}_{D D} / 2, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{R}_{\mathrm{L}}=\infty\right.$, connected to $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V} \overline{\mathrm{SHDN}}=\mathrm{V}_{D D}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Pin Description

PIN						NAME	FUNCTION
$\begin{aligned} & \text { MAX4230 } \\ & \text { SOT233/ } \\ & \text { SC70 } \end{aligned}$	$\begin{aligned} & \text { MAX4231 } \\ & \text { SOT23/ } \\ & \text { SC70/ } 1 \text { DFN } \end{aligned}$	$\begin{aligned} & \text { MAX4232 } \\ & \text { SOTT23/ } \\ & \mu M A X ~ \end{aligned}$	MAX4233 $\mu \mathrm{MAX}$ TDFN	MAX4233 UCSP	$\begin{aligned} & \text { MAX4234T } \\ & \text { SSOP/ } \\ & \text { SO } \end{aligned}$		
1	1	-	-	-	-	$1 \mathrm{~N}+$	Noninverting Input
2	2	4	4	B4	11	VSS	Negative Supply Input. Connect to ground for single-supply operation.
3	3	-	-	-	-	IN-	Inverting Input
4	4	-	-	-	-	OUT	Amplifier Output
5	6	8	10	B1	4	VDD	Positive Supply Input
-	5	-	5,6	C4, A4	-	$\frac{\overline{\mathrm{SHDN}},}{\frac{\mathrm{SHDN1}}{\mathrm{SHDN} 2}}$	Shutdown Control. Tie to high for normal operation.
-	-	3	3	C3	3	IN1+	Noninverting Input to Amplifier 1
-	-	2	2	C2	2	IN1-	Inverting Input to Amplifier 1
-	-	1	1	C1	1	OUT1	Amplifier 1 Output
-	-	5	7	A3	5	IN2+	Noninverting Input to Amplifier 2
-	-	6	8	A2	6	IN2-	Inverting Input to Amplifier 2
-	-	7	9	A1	7	OUT2	Amplifier 2 Output
-	-	-	-	-	10, 12	IN3+, IN4+	Noninverting Input to Amplifiers 3 and 4
-	-	-	-	-	9, 13	IN3-, IN4-	Inverting Input to Amplifiers 3 and 4
-	-	-	-	-	8, 14	OUT3, OUT4	Amplifiers 3 and 4 Outputs

Detailed Description

Rail-to-Rail Input Stage
The MAX4230-MAX4234 CMOS operational amplifiers have parallel-connected n - and p-channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (VSS +1.2 V), and the p-channel stage is active for common-mode input voltages typically less than (VDD-1.2V).

Applications Information

Package Power Dissipation
Warning: Due to the high output current drive, this op amp can exceed the absolute maximum power-dissipation rating. As a general rule, as long as the peak current is less than or equal to 40 mA , the maximum package
power dissipation is not exceeded for any of the package types offered. There are some exceptions to this rule, however. The absolute maximum power-dissipation rating of each package should always be verified using the following equations. The equation below gives an approximation of the package power dissipation:

$$
\left.\mathrm{PlC}_{\mathrm{Cliss}}\right) \cong \mathrm{V}_{\mathrm{RmS}} \operatorname{lRms} \cos \theta
$$

where:
$V_{\text {RMS }}=$ RMS voltage from VDD to Vout when sourcing current and RMS voltage from VoUT to VSS when sinking current.

IRMS $=$ RMS current flowing out of or into the op amp and the load.
$\theta=$ phase difference between the voltage and the current. For resistive loads, $\operatorname{COS} \theta=1$.

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Figure 1. MAX4230/MAX4231 Used in Single-Supply Operation Circuit Example

For example, the circuit in Figure 1 has a package power dissipation of 196 mW :

$$
\begin{aligned}
\mathrm{RMS} & \cong\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{DC}}\right)+\frac{\mathrm{V}_{\mathrm{PEAK}}}{\sqrt{2}} \\
& =3.6 \mathrm{~V}-1.8 \mathrm{~V}+\frac{1.0 \mathrm{~V}}{\sqrt{2}}=2.507 \mathrm{~V}_{\mathrm{RMS}} \\
I_{\mathrm{RMS}} & \cong I_{\mathrm{DC}}+\frac{I_{P E A K}}{\sqrt{2}}=\frac{1.8 \mathrm{~V}}{32 \Omega}+\frac{1.0 \mathrm{~V} / 32 \Omega}{\sqrt{2}} \\
& =78.4 \mathrm{~mA}_{\mathrm{RMS}}
\end{aligned}
$$

where:
VDC = the DC component of the output voltage.
IDC = the DC component of the output current.
VPEAK = the highest positive excursion of the AC component of the output voltage.
IPEAK = the highest positive excursion of the AC component of the output current.
Therefore:

$$
\begin{aligned}
\operatorname{PIC}(\mathrm{DISS}) & =\text { VRMS IRMS }^{\operatorname{COS} \theta} \\
& =196 \mathrm{~mW}
\end{aligned}
$$

Adding a coupling capacitor improves the package power dissipation because there is no DC current to the load, as shown in Figure 2 :

Figure 2. Circuit Example: Adding a Coupling Capacitor Greatly Reduces Power Dissipation of its Package

$$
\begin{aligned}
\mathrm{V}_{\mathrm{RMS}} & \cong \frac{V_{\mathrm{PEAK}}}{\sqrt{2}} \\
& =\frac{1.0 \mathrm{~V}}{\sqrt{2}}=0.707 \mathrm{~V}_{\mathrm{RMS}} \\
\mathrm{I}_{\mathrm{RMS}} & \cong \mathrm{I}_{\mathrm{DC}}+\frac{I_{\mathrm{PEAK}}}{\sqrt{2}}=0 \mathrm{~A}+\frac{1.0 \mathrm{~V} / 32 \Omega}{\sqrt{2}} \\
& =22.1 \mathrm{~mA}_{\mathrm{RMS}}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\operatorname{PIC}(\mathrm{DISS}) & =\mathrm{V}_{\mathrm{RMS}} \mathrm{I}_{\mathrm{RMS}} \mathrm{COS} \theta \\
& =15.6 \mathrm{~mW}
\end{aligned}
$$

If the configuration in Figure 1 were used with all four of the MAX4234 amplifiers, the absolute maximum powerdissipation rating of this package would be exceeded (see the Absolute Maximum Ratings section).

60mW Single-Supply Stereo
 Headphone Driver

Two MAX4230/MAX4231s can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 2 can deliver 60 mW per channel with 1% distortion from a single 5 V supply.
The input capacitor ($\mathrm{CIN}_{\mathrm{I}}$), in conjunction with RIN, forms a highpass filter that removes the DC bias from the incoming signal. The -3 dB point of the highpass filter is given by:

$$
f_{-3 d B}=\frac{1}{2 \pi R_{I N} C_{I N}}
$$

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Figure 3. Dual MAX4230/MAX4231 Bridge Amplifier for 200mW at 3V

Choose gain-setting resistors RIN and RF according to the amount of desired gain, keeping in mind the maximum output amplitude. The output coupling capacitor, Cout, blocks the DC component of the amplifier output, preventing DC current flowing to the load. The output capacitor and the load impedance form a highpass filer with the -3dB point determined by:

$$
\mathrm{f}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi R_{\mathrm{L}} \mathrm{C}_{\mathrm{OUT}}}
$$

For a 32Ω load, a $100 \mu \mathrm{~F}$ aluminum electrolytic capacitor gives a low-frequency pole at 50 Hz .

Bridge Amplifier

The circuit shown in Figure 3 uses a dual MAX4230 to implement a 3 V , 200 mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single op-amp speaker driver when sin-gle-supply operation is necessary. Voltage gain is set to $10 \mathrm{~V} / \mathrm{V}$; however, it can be changed by adjusting the $82 \mathrm{k} \Omega$ resistor value.

Rail-to-Rail Input Stage
The MAX4230-MAX4234 CMOS op amps have parallelconnected n - and p -channel differential input stages that combine to accept a common-mode range extending to both supply rails. The n-channel stage is active for common-mode input voltages typically greater than (VSS +1.2 V), and the p-channel stage is active for common-mode input voltages typically less than (VDD 1.2 V).

Figure 4. Rail-to-Rail Input/Output Range

Rail-to-Rail Output Stage The minimum output is within millivolts of ground for sin-gle-supply operation, where the load is referenced to ground (VSS). Figure 4 shows the input voltage range and the output voltage swing of a MAX4230 connected as a voltage follower. The maximum output voltage swing is load dependent; however, it is guaranteed to be within 500 mV of the positive rail ($\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$) even with maximum load (32Ω to ground).
Observe the Absolute Maximum Ratings for power dissipation and output short-circuit duration (10s, max) because the output current can exceed 200mA (see the Typical Operating Characteristics.)

Input Capacitance

One consequence of the parallel-connected differential input stages for rail-to-rail operation is a relatively large input capacitance CIN (5 pF typ). This introduces a pole at frequency $\left(2 \pi R^{\prime} C \mid N\right)^{-1}$, where R^{\prime} is the parallel combination of the gain-setting resistors for the inverting or noninverting amplifier configuration (Figure 5). If the pole frequency is less than or comparable to the unity-gain bandwidth (10 MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10 MHz when $\mathrm{R}^{\prime}=2 k \Omega$. To maximize stability, $\mathrm{R}^{\prime} \ll 2 \mathrm{k} \Omega$ is recommended.

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Figure 5. Inverting and Noninverting Amplifiers with Feedback Compensation

To improve step response when $R^{\prime}>2 k \Omega$, connect small capacitor C_{f} between the inverting input and output. Choose Cf as follows:

$$
\mathrm{Cf}_{\mathrm{f}}=8\left(\mathrm{R} / \mathrm{Rf}_{\mathrm{f}}\right)[\mathrm{pf}]
$$

where R_{f} is the feedback resistor and R is the gain-setting resistor (Figure 5).

Driving Capacitive Loads
The MAX4230-MAX4234 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 780 pF . Figure 6 is a graph of the stable operating region for various capacitive loads vs. resistive loads. Figures 7 and 8 show the transient response with excessive capacitive loads (1500pF), with and without the addition of an isolation resistor in series with the output. Figure 9 shows a typical noninverting capaci-tive-load-driving circuit in the unity-gain configuration.

Figure 6. Capacitive-Load Stability

Figure 7. Small-Signal Transient Response with Excessive Capacitive Load

Figure 8. Small-Signal Transient Response with Excessive Capacitive Load with Isolation Resistor

Figure 9. Capacitive-Load-Driving Circuit

Figure 10. Shutdown Output Voltage Enable/Disable

The resistor improves the circuit's phase margin by isolating the load capacitor from the op amp's output.

Power-Up and Shutdown Modes

The MAX4231/MAX4233 have a shutdown option. When the shutdown pin ($\overline{\mathrm{SHDN}}$) is pulled low, supply current drops to $0.5 \mu \mathrm{~A}$ per amplifier ($\mathrm{V} D \mathrm{DD}=2.7 \mathrm{~V}$), the amplifiers are disabled, and their outputs are driven to VSS. Since the outputs are actively driven to $V_{S S}$ in shutdown, any pullup resistor on the output causes a current drain from the supply. Pulling SHDN high enables the amplifier. In the dual MAX4233, the two amplifiers shut down independently. Figure 10 shows the MAX4231's output voltage to a shutdown pulse. The MAX4231-MAX4234 typically settle within $5 \mu \mathrm{~s}$ after power-up. Figures 11 and 12 show IDD to a shutdown plus and voltage power-up cycle.

Figure 11. Shutdown Enable/Disable Supply Current

Figure 12. Power-Up/Down Supply Current

Selector Guide

PART	AMPS PER PACKAGE	SHUTDOWN MODE
MAX4230	Single	-
MAX4231	Single	Yes
MAX4232	Dual	-
MAX4233	Dual	Yes
MAX4234	Quad	-

When exiting shutdown, there is a $6 \mu s$ delay before the amplifier's output becomes active (Figure 10).

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Pin Configurations

Power Supplies and Layout

The MAX4230-MAX4234 can operate from a single 2.7 V to 5.5 V supply, or from dual $\pm 1.35 \mathrm{~V}$ to $\pm 2.5 \mathrm{~V}$ supplies. For single-supply operation, bypass the power supply with a 0.1μ F ceramic capacitor. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the op amps' inputs and outputs. Decrease stray capacitance by placing external components close to the op amps' pins, minimizing trace and lead lengths.
_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4232AKA +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SOT23-8	AAKW
MAX4232AUA +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}-8$	-
MAX4233AUB +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}-10$	-
MAX4233ABC +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mathrm{UCSP}-10$	ABE
MAX4233ATB +T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 TDFN-EP*	+ AQH
MAX4234AUD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 TSSOP	-
MAX4234ASD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 SO	-

+Denotes a lead-free/RoHS-compliant package.
$T=$ Tape and reel.
${ }^{*} E P=$ Exposed pad.

Chip Information

MAX4230 TRANSISTOR COUNT: 230
MAX4231 TRANSISTOR COUNT: 230
MAX4232 TRANSISTOR COUNT: 462
MAX4233 TRANSISTOR COUNT: 462
MAX4234 TRANSISTOR COUNT: 924

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

FRDNT VIEW
NDTES:
ALL DIMENSIDNS ARE IN MILLIMETERS.
FOIT LENGTH MEASURED AT INTERCEPT PIINT BETWEEN
DATUM A \& LEAD SURFACE.
PACKAGE םUTLINE EXCLUSIVE DF MLLD FLASH \& METAL BURR. MDLD
FLASH, PROTRUSIUN OR METAL BURR SHIULD NDT EXCEED 0.25 MM.
. PACKAGE QUTLINE INCLUSIVE OF SOLDER PLATING.
5. MEETS JEDEC MD178, VARIATIDN AA.
6. LEADS TU BE CIPLANAR WITHIN 0.10 mm
7. SULDER THICKNESS MEASURED AT FLAT SECTIUN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

 PRLPRRIETARY INFDRMATILN			
PACKAGE OUTLINE, SOT-23, 5 L			
APPRIVAL	$\begin{array}{\|c} \hline \text { DOCUMENT CONTROL NO. } \\ 21-0057 \end{array}$	F.	1/1

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NDTES:

1. ALL DIMENSIONS ARE IN MLLLIMETERS.
2. fogt length measured at intercept paint between datum a \& lead surface.
3. PACKAGE DUTLINE EXCLUSIVE OF MILD FLASH \& METAL BURR. MILD FLASH, PRITRUSION GR METAL BURR SHIULD NDT EXCEED 0.25mm.
4. PACKAGE DUTLINE INCLUSIVE OF SOLDER PLATING
5. PIN 1 IS LIWER LEFT PIN WHEN READING TIP MARK FRIM LEFT TO RIGHT. (SEE EXAMPLE TIP MARK)
6. PIN 1 I.D. DIT IS $0.3 \mathrm{~mm} \varnothing$ MIN. LICATED ABOVE PIN 1.
7. MEETS JEDEC MDI78, VARIATION AB
8. SOLDER THICKNESS MEASURED AT FLAT SECTIGN of LEAD between 0.08 mm AND 0.15 mm FROM LEADTIP.
9. LEAD TO BE CDPLANAR WITHIN 0.1mm.

SYMBLL	MIN	NDMINAL	MAX
A	0.90	1.25	1.45
Al	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
El	1.50	1.625	1.75
L	0.35	0.45	0.60
LI	0.60 REF.		
el	1.90 BSC.		
e	0.95 BSC.		
a	$0 \cdot$	$2.5{ }^{\circ}$	10°
PKG CIDES:			

10. NUMBER DF LEADS SHOWN ARE FIR REFERENCE DNLY.
11. MARKing is for package arientation reference anly.

HPALLAS /V/IXI/VI
PACKAGE OUTLINE, SOT 6L BODY

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.$$	
A2	0.20 REF.	

PACKAGE VARIATIONS							
PKG. CODE	N	D 2	E 2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \times \mathrm{xe}$
T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229/WEEC	0.30 ± 0.05	1.95 REF
T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED- 3	0.25 ± 0.05	2.00 REF
T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	---	0.20 ± 0.05	2.40 REF
T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	---	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE $\mathbb{N} \mathrm{mm}$. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. "N" IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
(1)DALLAS $/$ VI/IKI/VI

TILE: PACKAGE QUTLINE, $6,8,10$ \& 14 L
TDFN, EXPDSED PAD, $3 \times 3 \times 0.80 \mathrm{~mm}$
-DRAWING NOT TO SCALE-

TDFN, EXPESED PAD, $3 \times 3 \times 0.80 \mathrm{~mm}$
TPPROVAL DOCUNENT CONTROL No. REV. $2 / 2$

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Output-Drive, 10MHz, 10V/us, Rail-to-Rail I/O Op Amps with Shutdown in SC70

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :---: | :---: | :---: |
| 7 | $7 / 08$ | Added 6-pin μ DFN package for the MAX4231 | $1,2,8,13$ |

