Memory FRAM
 CMOS

256 K (32 K $\times 8$) Bit

MB85R256

- DESCRIPTIONS

The MB85R256 is an FRAM (Ferroelectric Random Access Memory) chip in a configuration of 32,768 words x 8 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.

Unlike SRAM MB85R256 is able to retain data without back-up battery.
The memory cells used for the MB85R256 has inproved at least 10^{10} times of read/write access per bit, significantly outperforming FLASH memory and EEPROM in durability.
The MB85R256 uses a pseudo - SRAM interface compatible with conventional asynchronous SRAM.

■ FEATURES

- Bit configuration: 32,768 words x 8 bits
- Read/write durability: 10^{10} times/bit (Min)
- Peripheral circuit CMOS construction
- Operating power supply voltage: 3.0 V to 3.6 V
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 28-pin, SOP flat package
- 28-pin, $\operatorname{TSOP}(1)$ flat package

PACKAGES

28-pin plastic SOP
(FPT-28P-M17)
(FPT-28P-M03)

MB85R256

PIN ASSIGNMENTS

(TOP VIEW)

(FPT-28P-M17)

(FPT-28P-M03)

PIN DESCRIPTIONS

Pin name	Function
A_{0} to A_{14}	Address Input
$\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$	Data input/output
$\overline{\mathrm{CE}}$	Chip enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output enable input
V_{cc}	Power supply $(+3.3 \mathrm{~V} \mathrm{Typ})$
GND	Ground

BLOCK DIAGRAM

FUNCTION LIST

Operation mode	$\overline{C E}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	$\mathrm{I} / \mathrm{O}_{7}$ to I/O000	Power supply current
Standby precharge	H	\times	\times	High-Z	Standby (Iss)
	\times	L	L		
Latch address	L	を	₹	-	-
Write	L	L	H	Data input	Operation (Icc)
Read	L	H	L	Data output	
Output Disable	\times	H	H	High-Z	

H : High level, L: Low level, x : Irrespective of " H " or " L "

ABSOLUTE MAXIMUM RANGES

Parameter		Symbol	Rating		
			Min	Max	
Power supply voltage	V_{cc}	-0.5	+4.6	V	
Input voltage	V_{IN}	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5$	V	
Output voltage	$\mathrm{V}_{\text {out }}$	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5$	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-40	+85	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power supply voltage	Vcc	3.0	3.3	3.6	V
High level input voltage	V_{H}	$0.8 \times \mathrm{Vcc}$	-	$\mathrm{V} \mathrm{cc}+0.5$	V
Low level input voltage	VIL	-0.5	-	+ 0.6	V
Operating temperature	TA	-40	-	+ 85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

- ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

Parameter	Symbol	Conditions	Value			Unit	
			Min	Typ	Max		
Input leakage current	\| إ1		$\mathrm{V}_{\mathrm{in}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$	-	-	10	$\mu \mathrm{A}$
Output leakage current	\| lıo		$\begin{aligned} & \mathrm{V} \text { out }=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}, \\ & \overline{\mathrm{CE}}=\mathrm{V}_{I H} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	-	-	10	$\mu \mathrm{A}$
Operating power supply current	Icc	```CE}=0.2 V Other Inputs = Vcc - 0.2 V/0.2 V, trc (Min), li/o = 0 mA```	-	5	10	mA	
Standby current	IsB	$\overline{\mathrm{CE}} \geq \mathrm{V}$ cc	-	5	100	$\mu \mathrm{A}$	
High level output voltage	Vон	$\mathrm{IoH}=-100 \mu \mathrm{~A}$	$0.8 \times \mathrm{Vcc}$	-	-	V	
Low level output voltage	VoL	$\mathrm{loL}=1.0 \mathrm{~mA}$	-	-	0.4	V	

2. AC Characteristics
(1) Read cycle
(within recommended operating conditions)

Parameter	Symbol	Value		Unit
		Min	Max	
Read cycle time	trc	235	-	ns
$\overline{\overline{C E}}$ active time	tca	150	10,000	
Read pulse width	trp	150	10,000	
Precharge time	tpc	85	-	
Address setup time	$\mathrm{tas}^{\text {a }}$	0	-	
Address hold time	tah	25	-	
$\overline{\mathrm{CE}}$ access time	tce	-	150	
$\overline{\mathrm{OE}}$ access time	toe	-	150	
$\overline{\mathrm{CE}}$ output floating time	thz	-	25	
$\overline{\text { OE }}$ output floating time	tohz	-	25	

MB85R256

(2) Write cycle

(within recommended operating conditions)

Parameter	Symbol	Value		Unit
		Min	Max	
Write cycle time	twc	235	-	ns
$\overline{\text { CE }}$ active time	tcA	150	10,000	
Write pulse width	twp	150	10,000	
Precharge time	tpc	85	-	
Address setup time	$\mathrm{tas}^{\text {a }}$	0	-	
Address hold time	taH	25	-	
Data setup time	tos	50	-	
Data hold time	toh	0	-	
Write set up time	tws	0	-	
Write hold time	twh	0	-	

(3) Power ON/OFF sequence

(within recommended operating conditions)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
$\overline{\text { CE LEVEL hold time at power OFF }}$	tpd	85	-		ns
$\overline{\text { CE LEVEL hold time at power ON }}$	tpu	85	-	-	ns
Power interval	tpi	1	-	-	$\mu \mathrm{s}$

3. Pin Capacitance

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Input capacitance	$\mathrm{C} I \mathbb{N}$	$\mathrm{~V}_{\mathbb{N}}=\mathrm{V}_{\text {out }}=\mathrm{GND}$,				
output capacitance	Cout	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	10	pF
		-	-	10	pF	

4. AC Characteristics Test Condition

Power supply voltage $: 3.0 \mathrm{~V}$ to 3.6 V
Input voltage amplitude : 0.3 V to 2.7 V
Input rising time $: 10 \mathrm{~ns}$
Input falling time : 10 ns
Input evaluation level : $2.0 \mathrm{~V} / 0.8 \mathrm{~V}$
Output evaluation level : $2.0 \mathrm{~V} / 0.8 \mathrm{~V}$
Output load : 100 pF

TIMING DIAGRAM

1. Read cycle ($\overline{\mathrm{CE}}$ Control)

2. Read cycle ($\overline{\mathrm{OE}}$ Control)

MB85R256

3. Write cycle (CE Control)

4. Write cycle (WE Control)

POWER ON/OFF SEQUENCE

*: $\overline{\mathrm{CE}}(\mathrm{Max})<\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V}$

- NOTES ON USE

After IR reflow, the hold of data that was written before IR reflow is not guaranteed.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB85R256PF	28-pin, plastic SOP (FPT-28P-M17)	
MB85R256PFTN	28-pin, plastic TSOP(1) (FPT-28P-M03)	

PACKAGE DIMENSIONS

28-pin plastic SOP (FPT-28P-M17)

Note 1) *1: These dimensions include resin protrusion.
Note 2) *2 : These dimensions do not include resin protrusion.
Note 3) Pins width and pins thickness include plating thickness.
Note 4) Pins width do not include tie bar cutting remainder.

© 2002 FUJITSU LIMITED F28048S-C-3-4
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
(Continued)
(Continued)
28-pin plastic TSOP(1)
(FPT-28P-M03)

© 1997 FUJTSSU LIMTED F280188-5C-3
Dimensions in mm (inches).
Note: The values in parentheses are reference values.

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

