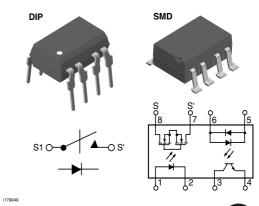


Vishay Semiconductors


Telecom Switch - 1 Form A Solid State Relay

Features

- Solid State Relay and Optocoupler in One Package
- · Surface Mount Package
- I/O Isolation, 5300 V_{RMS}
- LH1529A, CTR Min. = 33 %
- LH1529B, CTR Min. = 100 %
- Optocoupler
 - Bidirectional Current Detection
- Solid-state Relay (Equivalent to TS117P)
 - Typical R_{ON} 20 Ω
 - Load Voltage 350 V
 - Load Current 120 mA
 - Current Limit Protection
 - High Surge Capability
 - Clean Bounce Free Switching
 - Low Power Consumption
 - High Reliability Monolithic Receptor
- · Lead-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Agency Approvals

- UL1577, File No. E52744 System Code H or J, Double Protection
- BSI/BABT Cert. No. 7980
- · FIMKO Approval

Applications

General Telecom Switching

- On/off Hook Control
- Dial Pulse
- Ring Current Detection
- Loop Current Sensing

See "Solid State Relays" (Application Note 56)

Description

The LH1529A and LH1529B Telecom switches consist of an optically coupled solid state relay (SSR) and bidirectional input optocoupler. The SSR is ideal for performing switch hook and dial-pulse switching while optocoupler performs ring detection and loop current sensing functions. Both the SSR and optocoupler pro-

Absolute Maximum Ratings, Tamb = 25 °C

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Ratings for extended periods of time can adversely affect reliability.

SSR

Parameter	Test condition	Symbol	Value	Unit
LED continuous forward current		I _F	50	mA
LED reverse voltage	$I_R \le 10 \mu A$	V _R	5.0	V
DC or peak AC load voltage	$I_L \le 50 \mu A$	V _L	350	V
Continuous DC load current		ΙL	120	mA
Total power dissipation		P _{diss}	600	mW
Ambient temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 150	°C
Soldering temperature	t = 10 s max.	T _{sld}	260	°C

Document Number 83827 www.vishay.com

Rev. 1.3, 11-Nov-04

Vishay Semiconductors

Parameter	Test condition	Symbol	Value	Unit
Isolation test voltage (for 1.0 s)		V _{ISO}	5300	V _{RMS}
Isolation resistance	V_{IO} = 500 V, T_{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
	V_{IO} = 500 V, T_{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω

Optocoupler

Parameter	Test condition	Symbol	Value	Unit
LED continuous forward current		I _F	50	mA
LED reverse voltage	$I_R \le 10 \mu A$	V_{R}	5.0	V
Collector-emitter breakdown voltage		BV _{CEO}	30	V
Phototransistor power dissipation		P _{diss}	150	mW

Electrical Characteristics, T_{amb} = 25 °C

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

SSR

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
LED forward current for switch turn-on	I _L = 100 mA, t = 10 ms		I _{Fon}		0.7	2.0	mA
LED forward current for switch turn-off	V _L = ± 300 V		I _{Foff}	0.2	0.6		mA
LED forward voltage	I _F = 10 mA		V _F	1.15	1.26	1.45	V
ON- resistance, AC/DC, pins 4 (±) to 6 (±)	$I_F = 5.0 \text{ mA}, I_L = \pm 50 \text{ mA}$		R _{ON}	12	20	25	Ω
Current limit	$I_F = 5.0 \text{ mA}, t = 5.0 \text{ ms},$ $V_L = \pm 6.0 \text{ V}$	LH1529AB	I _{limit}	230	260	370	mA
		LH1529AAC	I _{limit}	230	260	370	mA
		LH1529BB	I _{limit}	170	210	250	mA
		LH1529BAC	I _{limit}	170	210	250	mA
Off-state leakage current	$I_F = 0 \text{ mA}, V_L = \pm 100 \text{ V}$		Io		0.02	200	nA
	$I_F = 0 \text{ mA}, V_L = \pm 350 \text{ V}$		Io			1.0	μΑ
Output capacitance pin 7 to pin 8	$I_F = 0 \text{ mA}, V_L = 1 \text{ V}$		СО		55		pF
	$I_F = 0 \text{ mA}, V_L = 50 \text{ V}$		Co		10		pF
Capacitance (input-output)	V _{ISO} = 1.0 V		C _{IO}		1.3		pF
Turn-on time	$I_F = 5.0 \text{ mA}, I_L = 50 \text{ mA}$	LH1529AB	t _{on}		2.0	3.0	ms
		LH1529AAC	t _{on}		2.0	3.0	ms
		LH1529BB	t _{on}		1.3	2.5	ms
		LH1529BAC	t _{on}		1.3	2.5	ms
Turn-off time	I _F = 5.0 mA, I _L = 50 mA	LH1529AB	t _{off}		0.6	3.0	ms
		LH1529AAC	t _{off}		0.6	3.0	ms
		LH1529BB	t _{off}		0.6	2.5	ms
		LH1529BAC	t _{off}		0.6	2.5	ms

www.vishay.com

Document Number 83827

Rev. 1.3, 11-Nov-04

Vishay Semiconductors

Optocoupler

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
LED forward voltage	I _F = 10 mA		V _F	0.9	1.2	1.5	V
Saturation voltage	$I_F = 16 \text{ mA}, I_C = 2.0 \text{ mA}$		V _{CEsat}		0.7	0.5	V
Collector-emitter dark current	$I_F = 0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		I _{CEO}			500	nA
Trickle current leakage	$I_F = 5.0 \mu A, V_{CE} = 5.0 V$		I _{CEO}			1.0	μΑ
DC Current Transfer Ratio	$I_F = 6.0 \text{ mA}, V_{CE} = 0.5 \text{ V}$	LH1529AB	CTR _{DC}	33	100		%
		LH1529AAC	CTR _{DC}	33	100		%
		LH1529BB	CTR _{DC}	100	165		%
		LH1529BAC	CTR _{DC}	100	165		%

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

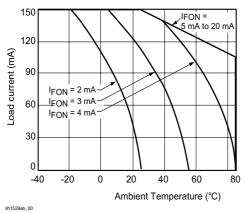


Figure 1. Recommended Operating Conditions

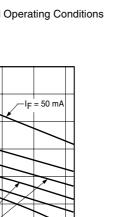


Figure 2. LED Voltage vs. Temperature

I_F = 5 mA I_F = 10 mA

20

Ambient Temperature (°C)

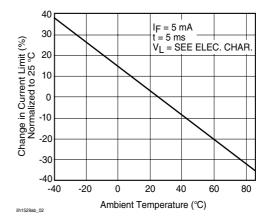


Figure 3. Current Limit vs. Temperature

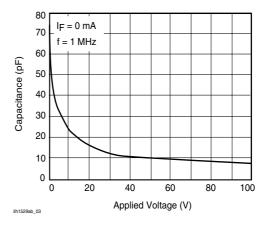


Figure 4. Switch Capacitance vs. Applied Voltage

1.6

1.5

1.4

1.3

1.2

1.1

1.0

-40

 $I_F = 1 \text{ mA}$

 $I_F = 2 \text{ mA}$

-20

0

LED Forward Voltage (V)

Vishay Semiconductors

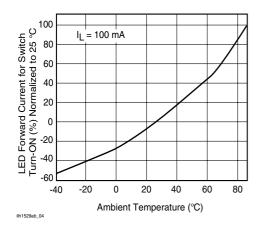


Figure 5. LED Current for Switch Turn-off vs. Temperature

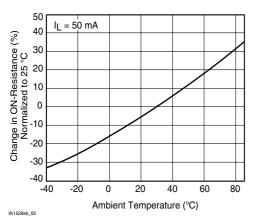


Figure 6. ON-Resistance vs. Temperature

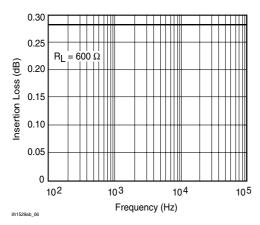


Figure 7. Insertion Loss vs. Frequency

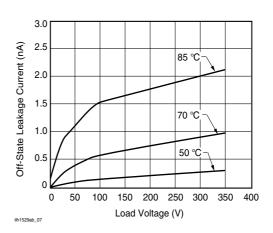


Figure 8. Leakage Current vs. Applied Voltage at Elevated Temperatures

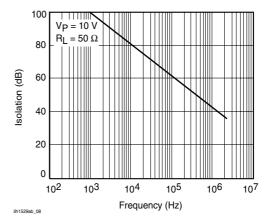
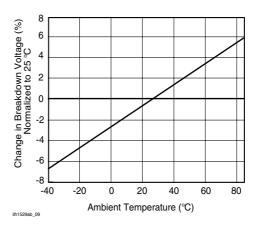
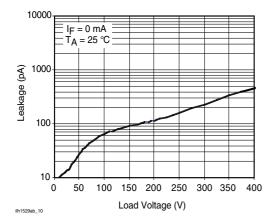
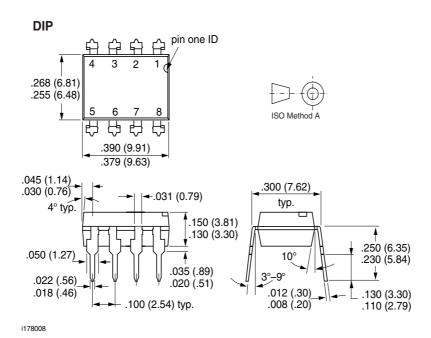


Figure 9. Output Isolation



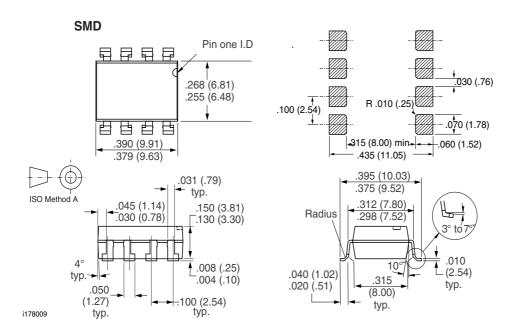

Figure 10. Switch Breakdown Voltage vs. Temperature



Vishay Semiconductors

Figure 11. Leakage Current vs. Applied Voltage

Package Dimensions in Inches (mm)



www.vishay.com

Vishay Semiconductors

VISHAY

Package Dimensions in Inches (mm)

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

Document Number 83827 www.vishay.com

Rev. 1.3, 11-Nov-04

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com