Low-Cost, μ P Supervisory Circuits

General Description

The MAX705-MAX708/MAX813L microprocessor ($\mu \mathrm{P}$) supervisory circuits reduce the complexity and number of components required to monitor power-supply and battery functions in $\mu \mathrm{P}$ systems. These devices significantly improve system reliability and accuracy compared to separate ICs or discrete components.
The MAX705/MAX706/MAX813L provide four functions:

1) A reset output during power-up, power-down, and brownout conditions.
2) An independent watchdog output that goes low if the watchdog input has not been toggled within 1.6 seconds.
3) A 1.25 V threshold detector for power-fail warning, low-battery detection, or for monitoring a power supply other than +5 V .
4) An active-low manual-reset input.

The MAX707/MAX708 are the same as the MAX705/ MAX706, except an active-high reset is substituted for the watchdog timer. The MAX813L is the same as the MAX705, except RESET is provided instead of RESET.
Two supply-voltage monitor levels are available: The MAX705/MAX707/MAX813L generate a reset pulse when the supply voltage drops below 4.65 V , while the MAX706/MAX708 generate a reset pulse below 4.40V. All four parts are available in 8-pin DIP, SO and $\mu \mathrm{MAX}{ }^{\circledR}$ packages.

Applications
Computers
Controllers
Intelligent Instruments
Automotive Systems
Critical $\mu \mathrm{P}$ Power Monitoring
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.
Typical Operating Circuit

Features

- Available in Tiny μ MAX Package
- Guaranteed RESET Valid at $\mathrm{V}_{\mathrm{Cc}}=1 \mathrm{~V}$
- Precision Supply-Voltage Monitor 4.65V in MAX705/MAX707/MAX813L 4.40V in MAX706/MAX708
- 200ms Reset Pulse Width
- Debounced TTL/CMOS-Compatible Manual-Reset Input
- Independent Watchdog Timer-1.6s Timeout (MAX705/MAX706)
- Active-High Reset Output (MAX707/MAX708/MAX813L)
- Voltage Monitor for Power-Fail or Low-Battery Warning

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX705CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX705CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX705CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX705C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$

Ordering Information continued at end of data sheet.

* Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}$.
** Contact factory for availability and processing to MIL-STD-883. Devices in PDIP, SO and μ MAX packages are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering. Lead-free not available for CERDIP package.

Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Low-Cost, μ P Supervisory Circuits

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)	
$V_{\text {cc }}$	-0.3V to 6.0V
All Other Inputs (Note 1) -0.3V	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Input Current	
$V_{C C}$	20 mA
GND	20 mA
Output Current (all outputs)	20 mA
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	$\left.0^{\circ} \mathrm{C}\right)$....... 727 mW
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	471 mW
$\mu \mathrm{MAX}$ (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	330 mW

CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW Operating Temperature Ranges
MAX70_C_, MAX813LC_ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX70_E__, MAX813LE__ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX70_MJA $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . . \quad-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
Lead(Pb)-free
$+260^{\circ} \mathrm{C}$
Containing Lead(Pb)
$+240^{\circ} \mathrm{C}$
$\mu \mathrm{MAX}$ (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
Note 1: The input voltage limits on PFI and MR can be exceeded if the input current is less than 10 mA
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.5 V for MAX705/MAX707/MAX813L, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V for MAX706/MAX708, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

Low-Cost, μ P Supervisory Circuits

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.5 V for MAX705/MAX707/MAX813L, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V for MAX706/MAX708, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER		SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MR Pull-Up Current			$\mathrm{MR}=0 \mathrm{~V}$	100	250	600	$\mu \mathrm{A}$
MR Pulse Width		tMR		150			ns
MR Input Threshold	Low					0.8	V
	High			2.0			
MR to Reset Out Delay (Note 2)		tMD				250	ns
PFI Input Threshold			$V_{C C}=5 \mathrm{~V}$	1.20	1.25	1.30	V
PFI Input Current				-25.00	+0.01	+25.00	nA
PFO Output Voltage			ISOURCE $=800 \mu \mathrm{~A}$	VCC -1.5			V
			ISINK $=3.2 \mathrm{~mA}$			0.4	

Note 2: Applies to both RESET in the MAX705-MAX708 and RESET in the MAX707/MAX708/MAX813L.

Low-Cost, μ P Supervisory Circuits

Low-Cost, $\boldsymbol{\mu}$ P Supervisory Circuits

Pin Description

PIN						NAME	FUNCTION
MAX705/MAX706		MAX707/MAX708		MAX813L			
DIP/SO	$\mu \mathrm{MAX}$	DIP/SO	$\mu \mathrm{MAX}$	DIP/SO	$\mu \mathrm{MAX}$		
1	3	1	3	1	3	$\overline{\mathrm{MR}}$	Manual-Reset Input triggers a reset pulse when pulled below 0.8 V . This active-low input has an internal $250 \mu \mathrm{~A}$ pull-up current. It can be driven from a TTL or CMOS logic line as well as shorted to ground with a switch.
2	4	2	4	2	4	$V_{\text {CC }}$	+5V Supply Input
3	5	3	5	3	5	GND	OV Ground Reference for all signals
4	6	4	6	4	6	PFI	Power-Fail Voltage Monitor Input. When PFI is less than 1.25 V , $\overline{\mathrm{PFO}}$ goes low. Connect PFI to GND or $V_{C C}$ when not used.
5	7	5	7	5	7	PFO	Power-Fail Output goes low and sinks current when PFI is less than 1.25 V ; otherwise $\overline{\mathrm{PFO}}$ stays high.
6	8	-	-	6	8	WDI	Watchdog Input. If WDI remains high or low for 1.6 sec , the internal watchdog timer runs out and WDO goes low (Figure 1). Floating WDI or connecting WDI to a high-impedance three-state buffer disables the watchdog feature. The internal watchdog timer clears whenever reset is asserted, WDI is threestated, or WDI sees a rising or falling edge.
-	-	6	-	-	-	N.C.	No Connect
7	1	7	1	-	-	$\overline{\text { RESET }}$	Active-Low Reset Output pulses low for 200 ms when triggered, and stays low whenever V_{CC} is below the reset threshold (4.65V in the MAX705 and 4.40 V in the MAX706). It remains low for 200ms after V_{CC} rises above the reset threshold or $\overline{\mathrm{MR}}$ goes from low to high (Figure 3). A watchdog timeout will not trigger $\overline{\text { RESET }}$ unless $\overline{\mathrm{WDO}}$ is connected to $\overline{\mathrm{MR}}$.
8	2	-	-	8	2	$\overline{\text { WDO }}$	Watchdog Output pulls low when the internal watchdog timer finishes its 1.6 sec count and does not go high again until the watchdog is cleared. WDO also goes low during low-line conditions. Whenever V_{CC} is below the reset threshold, $\overline{\text { WDO }}$ stays low; however, unlike $\overline{\text { RESET }}, \overline{\text { WDO }}$ does not have a minimum pulse width. As soon as V_{CC} rises above the reset threshold, WDO goes high with no delay.
-	-	8	2	7	1	RESET	Active-High Reset Output is the inverse of $\overline{\text { RESET. }}$ Whenever RESET is high, $\overline{\operatorname{RESET}}$ is low, and vice versa (Figure 2). The MAX813L has a RESET output only.

Low-Cost, μ P Supervisory Circuits

Figure 1. MAX705/MAX706/MAX813L Block Diagram

Detailed Description

Reset Output

A microprocessor's ($\mu \mathrm{P}$'s) reset input starts the $\mu \mathrm{P}$ in a known state. Whenever the $\mu \mathrm{P}$ is in an unknown state, it should be held in reset. The MAX705-MAX708/MAX813L assert reset during power-up and prevent code execution errors during power-down or brownout conditions.
On power-up, once $\mathrm{V}_{C C}$ reaches 1 V , $\overline{\operatorname{RESET}}$ is a guaranteed logic low of 0.4 V or less. As V_{CC} rises, RESET stays low. When V_{CC} rises above the reset threshold, an internal timer releases RESET after about 200ms. RESET pulses low whenever V_{Cc} dips below the reset threshold, i.e. brownout condition. If brownout occurs in the middle of a previously initiated reset pulse, the pulse continues for at least another 140 ms . On power-down, once V_{CC} falls below the reset threshold, $\overline{\text { RESET }}$ stays low and is guaranteed to be 0.4 V or less until V_{CC} drops below 1 V .
The MAX707/MAX708/MAX813L active-high RESET output is simply the complement of the RESET output, and is guaranteed to be valid with V_{CC} down to 1.1 V . Some $\mu \mathrm{Ps}$, such as Intel's 80C51, require an active-high reset pulse.

Watchdog Timer

The MAX705/MAX706/MAX813L watchdog circuit monitors the $\mu \mathrm{P}$'s activity. If the $\mu \mathrm{P}$ does not toggle the watchdog input (WDI) within 1.6 sec and WDI is not three-stated, WDO goes low. As long as RESET is asserted or the

Figure 2. MAX707/MAX708 Block Diagram

WDI input is three-stated, the watchdog timer will stay cleared and will not count. As soon as reset is released and WDI is driven high or low, the timer will start counting. Pulses as short as 50 ns can be detected.
Typically, $\overline{W D O}$ will be connected to the non-maskable interrupt input (NMI) of a $\mu \mathrm{P}$. When V_{CC} drops below the reset threshold, WDO will go low whether or not the watchdog timer has timed out yet. Normally this would trigger an NMI interrupt, but RESET goes low simultaneously, and thus overrides the NMI interrupt.
If WDI is left unconnected, $\overline{W D O}$ can be used as a lowline output. Since floating WDI disables the internal timer, WDO goes low only when V_{CC} falls below the reset threshold, thus functioning as a low-line output.
The MAX705/MAX706 have a watchdog timer and a RESET output. The MAX707/MAX708 have both activehigh and active-low reset outputs. The MAX813L has both an active-high reset output and a watchdog timer.

Manual Reset

The manual-reset input $(\overline{\mathrm{MR}})$ allows reset to be triggered by a pushbutton switch. The switch is effectively debounced by the 140 ms minimum reset pulse width. $\overline{\mathrm{MR}}$ is TTL/CMOS logic compatible, so it can be driven by an external logic line. $\overline{\mathrm{MR}}$ can be used to force a watchdog timeout to generate a reset pulse in the MAX705/ MAX706/MAX813L. Simply connect WDO to $\overline{\mathrm{MR}}$.

Low-Cost, μ P Supervisory Circuits

Power-Fail Comparator

The power-fail comparator can be used for various purposes because its output and noninverting input are not internally connected. The inverting input is internally connected to a 1.25 V reference.

Figure 3. MAX705/MAX706/MAX813L Watchdog Timing

Figure 4. MAX705/MAX706 $\overline{R E S E T}, \overline{M R}$, and $\overline{W D O}$ Timing with WDI Three-Stated. The MAX707/MAX708/MAX813L RESET output is the inverse of $\overline{\operatorname{RESET}}$ shown.

To build an early-warning circuit for power failure, connect the PFI pin to a voltage divider (see Typical Operating Circuit). Choose the voltage divider ratio so that the voltage at PFI falls below 1.25 V just before the +5 V regulator drops out. Use PFO to interrupt the $\mu \mathrm{P}$ so it can prepare for an orderly power-down.

Applications Information

Ensuring a Valid RESET Output Down to $\mathbf{V}_{\boldsymbol{c c}}=\mathbf{O V}$

When $\mathrm{V}_{C C}$ falls below 1 V , the MAX705-MAX708 RESET output no longer sinks current-it becomes an open circuit. High-impedance CMOS logic inputs can drift to undetermined voltages if left undriven. If a pull-down resistor is added to the RESET pin as shown in Figure 5, any stray charge or leakage currents will be drained to ground, holding RESET low. Resistor value (R1) is not critical. It should be about $100 \mathrm{k} \Omega$, large enough not to load RESET and small enough to pull RESET to ground.

Monitoring Voltages Other Than the Unregulated DC Input

Monitor voltages other than the unregulated DC by connecting a voltage divider to PFI and adjusting the ratio appropriately. If required, add hysteresis by connecting a resistor (with a value approximately 10 times the sum of the two resistors in the potential divider network) between PFI and PFO. A capacitor between PFI and GND will reduce the power-fail circuit's sensitivity to high-frequency noise on the line being monitored. $\overline{\text { RESET }}$ can be asserted on other voltages in addition to the $+5 \mathrm{~V} \mathrm{~V}_{C C}$ line. Connect $\overline{\mathrm{PFO}}$ to $\overline{\mathrm{MR}}$ to initiate a RESET pulse when PFI drops below 1.25 V . Figure 6 shows the MAX705-MAX708 configured to assert RESET when the +5 V supply falls below the reset threshold, or when the +12 V supply falls below approximately 11 V .

Monitoring a Negative Voltage

The power-fail comparator can also monitor a negative supply rail (Figure 7). When the negative rail is good (a negative voltage of large magnitude), $\overline{\mathrm{PFO}}$ is low, and when the negative rail is degraded (a negative voltage of lesser magnitude), $\overline{\mathrm{PFO}}$ is high. By adding the resistors and transistor as shown, a high PFO triggers reset. As long as PFO remains high, the MAX705MAX708/MAX813L will keep reset asserted ($\overline{\text { RESET }}=$ low, RESET = high). Note that this circuit's accuracy depends on the PFI threshold tolerance, the V_{CC} line, and the resistors.

Low-Cost, μ P Supervisory Circuits

Figure 5. RESET Valid to Ground Circuit

Figure 7. Monitoring a Negative Voltage

Figure 6. Monitoring Both +5 V and +12 V

Figure 8. Interfacing to μ Ps with Bidirectional Reset I/O

Interfacing to μ Ps with

 Bidirectional Reset Pinsμ Ps with bidirectional reset pins, such as the Motorola 68HC11 series, can contend with the MAX705-MAX708 RESET output. If, for example, the RESET output is driven high and the $\mu \mathrm{P}$ wants to pull it low, indeterminate logic levels may result. To correct this, connect a $4.7 \mathrm{k} \Omega$ resistor between the RESET output and the $\mu \mathrm{P}$ reset I/O, as in Figure 8. Buffer the RESET output to other system components.
\qquad

Low-Cost, μ P Supervisory Circuits

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX705EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX705ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX705EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX705MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX706CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX706CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX706CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX706C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX706EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX706ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX706EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX706MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX707CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX707CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX707CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX707C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX707EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX707ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX707EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX707MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX708CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX708CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX708CUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX708C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX708EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX708ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX708EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX708MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX813LCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX813LCSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX813LCUA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX813LC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX813LEPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX813LESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX813LEUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX813LMJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

* Dice are specified at $T_{A}=+25^{\circ} \mathrm{C}$.
** Contact factory for availability and processing to MIL-STD-883. Devices in PDIP, SO and μ MAX packages are available in both leaded and lead-free packaging. Specify lead free by adding the + symbol at the end of the part number when ordering. Lead free not available for CERDIP package.

Pin Configurations (continued)

Chip Topography

() ARE FOR MAX813L ONLY.
TRANSISTOR COUNT: 572
SUBSTRATE MUST BE LEFT UNCONNECTED.

Low-Cost, μ P Supervisory Circuits

MAX705-MAX708/MAX813L
μ P Supervisory Circuits

[^0]
Low-Cost, μ P Supervisory Circuits

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
$8 \mu \mathrm{MAX}$	U8-1	$\underline{\mathbf{2 1 - 0 0 3 6}}$
8 Plastic DIP	$\mathrm{P} 8-1$	$\underline{\mathbf{2 1 - 0 0 4 3}}$
8 SO	$\mathrm{S} 8-1$	$\underline{\mathbf{2 1 - 0 0 4 1}}$

Low-Cost, μ P Supervisory Circuits

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$2 / 92$	Initial release	-
8	$3 / 10$	Updated the Features, Absolute Maximum Ratings, Typical Operating Characteristics, Figures $3,7,8$, and the Package Information sections.	$1,2,4,7,8,10$

[^0]: Prices provided are for design guidance and are FOB USA (unless otherwise noted). International prices will differ due to local duties, taxes, and exchange rates.
 Future product - contact factory for pricing and availability. Specifications are preliminary. Future product-contact direct
 $25,000 \mathrm{pc}$. price, factory

