H8/300 scrs

microcontrollers

@ HITACH!

H8—-300

MICROCONTROLLERS

INDEX

Introduction

ZTAT™ Concept
CPU Core
Exception Processing
Power Down Modes
Peripherals

The H8/300 Family
H8/330

H8/32 Family
H8/350

H8/310

Packages

Support Tools

Page

12
13
13
14
15
16

18

HS8 / 300

Introduction

Microcontrollers, in
many shapes and forms,
have now penetrated
many aspects of everyday
life. You will often find
microcontrollers in the
car or train that gets you
to work, perhaps in your
company's coffee
machine, and much of
your workplace's office
and production
equipment.

Indeed, it is safe to say
that you will own at least
one piece of equipment
which contains a
microcontroller, whether
its a sophisticated Hi-Fi, a
feature phone or an
automatic washing
machine.

The embedded software
within such a system is
particularly important, as
it provides the
fuctionality, advanced
features and sometimes,
unfortunately, short-
comings. So the quality of
this software is crucial to
your products success.

To ensure that
programmers produce
top quality software for
their microcontrollers,
many companies would
now like to base their
developments on a High
Level Language (HLL),
such as “C” or Pascal.

The advantages of using
HLL's include
programmer

productivity and easier
software maintenance.

Using a HLL, code can be
generated much faster
than when using
assembler as the code is
‘written in English-like
statements (such as IF,
ELSE, WHILE). So using a
HLL you are able to write
application code much
more efficiently.

- HLL's also offer another

great advantage -
portability! The
movement of application
code, from one project to
the next, and even to a
new microcontroller can
be easily achieved using a
HLL, by selecting a

different compiler to suit
your new choice of
architecture. This means
embedded software, which
is very costly to develop can
be used in many projects;
saving development
resource and reducing the
time to market for your

products.

But the requirement for
HLL in a microcontroller
system is not always
straightforward.

Traditionally
microcontrollers have
been limited to very
simple accumulator bound
CPU architectures, and a
HLL can only produce
large, slow and unwieldy
code to run on them.

This is not the case with
the H8/300 series of
microcontrollers. As well
as offering all the features
you would expect in a
microcontroller, such as on
chip memory and

peripherals, it also contains a
powerful 8 bit CPU. This CPU
has an architecture and
instruction set well tuned to
run code produced by modern
HLL compilers, especially “C”
compilers.

As the Hitachi H8/300 family

couples extremely high
memory and peripheral
integration, with the
capability of efficient
execution of the “C”
language. You can now
seriously consider
moving your
development up to the
C level.

The ZTAT ™ Concept

ZTAT™ (Zero Turn
Around Time) is the
Hitachi way to offer its
customers total flexibility
when taking their
products from
conception through to
final production.

ZTAT™ provides both
one time programmable
CMOS EPROM on chip
and mask programmable
devices, in identical
packages. By offering
ZTAT we enable our
customers to easily
progress from the
prototype stage, through
to pilot production (both
of which can use ZTAT).
Final production could
use either ZTAT for
small/ medium volume
or a mask ROM part for
larger volumes.

The advantages of ZTAT
extend even further than
this. There is no mask
charge, reduced lead time
and changes in software
can be accommodated
quickly just by “blowing”
a new microcontroller.

And of course we
haven’t forgotten the

period of development
where you seem to go
through a new version of
software every day. Blowing
a one time programmable
device for each revision of
your software could soon
exceed your development
budget!

For this situation Hitachi
can offer uv-erasable devices
(EPROM), which are ideally
suited to initial
development purposes.

HS8/300 CPU Overview

When Hitachi’s designers
began work on the H8/300
CPU they threw away the
rule book, and began with a
blank sheet of paper.
Therefore HS8/300 was
designed with no
compatibility constraints,
and it certainly shows! This
enabled the designers to
accommodate the
requirements of HLL
compilers, and to achieve
outstanding performance.

CPU Model

The H8/300 CPU is based
around what is known as a
general register architecture.
The CPU model is shown in
Figure 1. Each register
shown can be used for any
purpose - hence the name
(The H8/300 has either 16
general registers that are 8
bits wide, or 8 general
registers that are 16 bits
wide).

Each CPU register can be
used as an accumulator, an
index register, an address
pointer or just high speed
local storage. It can be said
that H8/300 has 16
accumulators in
comparison with previous
architectures which only
have 1 or possibly 2!

From the point of view of a
compiler writer, having so
many available
accumulators makes for a
much more efficient
compiler. Additionally all
of these accumulators can
be used as index registers or
address pointers. The
compiler can calculate the
address of a variable in a

15 0
ROH RO ROL

RIH Rl RIL
RRH R2 Ri
R3H R3L
R4H R4L
RSH RS RsL
RéH R6 ReL

R7H R7(SP) R7L
General Purpose Register

Figure 1- H8 /300 CPU Model

15 0
PC

Program Counter

CCR
Condition Code Register

Figure 2 - HB8/300 Addressing Modes
NO. ADDRESSING MODE MNEMONIC

Register direct Rn
Register indirect @ Rn

3 |Register indirect with 16-bit displacement | @ (d:16,Rn)

4 |Resgister indirect with pre-decrement @ _Rn
or post increment @ Rn+

5 Immediate (3-, 8-, or 16-bit data) #xx:3, #xx: 8, #xx:16

6 Absolute address (8 or 16 bits) @aa:8, @aa:16

7 | PC-relative (8-bit displacement) @ (d: 8, PC)

8 |Memory indirect @@aa:8

register, and in the next
instruction use that same
register as an address
pointer to access the
variable. This significantly
reduces the amount of
code that is required to
perform such an operation
compared to a traditional
architecture which has
separate accumulators and
index registers.

Internal Buses

Although the H8/300
series is based on an 8 bit
CPU, it can be seen that its
registers and memory can
be accessed as 16 bit

locations. To further
increase the CPU
performance the internal

data bus of the H8/300
series are all 16 bits wide,
giving fast, 2 state word
access to internal memory.

Addressing Modes

Another way a CPU
architecture can support
the compiler writer is by
providing powerful,
flexible addressing modes.

A CPU which only has
rudimentary addressing
modes makes a compiler
inefficient in accessing
variables, thereby
increasing both execution
time and code size.

To ease the operation of
the compiler, the H8/300
CPU provides 8
addressing modes which
are shown in Figure 2.
These modes range from
simple direct and indirect

operations through to
indirect plus
displacement.

Supporting array and
stack data types H8/300
has indirect addressing
with either a
post-increment or
pre-decrement. These

modes support both byte and
word data (1 or 2).

For accessing local variables
(which are kept on the stack)
the addressing mode indirect
plus displacement is used.
The operation of this mode
is shown in Figure 3. It
allows stack based variables
to be accessed in one
instruction. This signficantly
reduces the code size and
exection time when running
a compiled language.

H8/300 has 2 direct
addressing modes, using
either an 8 or 16 bit absolute
address. The 16 bit mode has
the capability to access any
location in the devices 64K
address space using a single
instruction. By its nature
any operation which uses

Figure 3 - Effective Address Calculation

15

q

Register indirect with displacement

I 16-bit register contents

addressing mode @ (d: 16, Rn)

15

[]

[16-bit displacement

Operand address is sum
of register contents and

15 0

76 4 3
or lreg l
disp

displacement

Figure 4 - H8 / 300 Instruction Set
FUNCTION INSTRUCTIONS TYPES

Data transfer MOV, MOVFPE, MOVTPE, POP, PUSH 3

Arithmetic operations | ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, DIVXU, CMP, NEG

Logic operations AND, OR, XOR, NOT 4

Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8
ROTXR

Bit manipulation BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

Branch Bec,]MP, BSR, JSR, RTS 5

System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8

Block data transfer EEPMOV 1

Total:| 57

this mode must have a 16
bit address field.

For more compact access
to variables the 8-bit direct
mode has been provided.
This will access any byte
within the top 256 byte
page of the H8/300s
memory when this mode
is used. (It does this by
making the most
significant byte on the
address bus H'FF).

The 8-bit mode is
particulary useful when
accessing 1/0O registers.
The H8/300
microcontrollers have
this area located within
the top 256 byte page,
which can therefore be
accessed by these
shortened addresses.

Instruction Set

H8/300 has a streamlined
instruction set, well
suited to the needs of a
HLL, and also embedded
applications in general.

The instruction set
comprises 57 instructions,
which are either 2 or 4
bytes long.

All of the most frequently
used instructions execute in
just 2 states. That is 200 nS
if the device is clocked at
10Mhz. Indeed even
complex instructions such
as an 8 * 8 multiplication
only take 14 states, giving
the H8/300 unrivalled 8 bit
CPU performance.

Figure 4 shows the complete
HB8/300 instruction set, and
from this you can see the
full extent of the H8/300s
instruction power.

Bit Processing

In microcontroller
applications it is often
necessary to manipulate
data on a bit by bit basis. A
good example would be
where an I/O pin needs to

be set, to switch on a lamp
or other device.

The H8/300 CPU has 14
separate bit processing
instructions, which allow
the programmer to
manipulate bit data very
easily. Also it is possible to
perform boolean algebra
on bit data. The H8/300
CPU provides a bit
accumulator using its carry
flag and a full set of
boolean operations (AND,
OR, XOR and NOT) for bit
data.

Another feature of the bit
processing instructions of
the H8/300 CPU is its
ability to access bits
indirectly, using the value
from a general purpose
register as a bit pointer.
This mechanism is shown
in Figure 5 and is useful
for scanning a byte for set
or cleared bits.

H8/300
Processing

Exception

In any microcontroller
environment, it is
important to handle
asynchronous events as
efficiently as possible.
These events may come
from a number of different
sources, such as motion

Figure 5 - Indirect Bit Access

BTST ROL, R1L

RuL[xlx[xIXIXIx[1[11°T

¥"'~_'/ Bit Pointer

ponnnnon

Bit 6 is tested

Figure 6 - Interrupt Handling Sequence

1-» L, masking all
interrup®s acept NMI

'@ soitw are intarTupe
handling routine

sensors, frequency sources
or the microcontroller's
internal peripherals.

These events are best
handled using interrupts,
and a powerful interrupt
structure allows a number
of events to be handled
easily.

H8/300 has a novel
approach to interrupts, in
which an interrupt vector is
assigned to each separate
event that the
microcontroller can process.

So instead of the most
commonly applied method
in which one interrupt
vector is provided for each
separate peripheral, H8/300
microcontrollers have
several vectors per
peripheral. This speeds up
the execution of any
interrupt service routine, as
there is no need for the
service routine to check the
peripherals status register to
determine where the

interrupt came from.

For example, the serial port
of the H8/330
microcontroller can
generate three separate
interrupts, rx done, tx done
and rx error. To handle
these events three
interrupts are provided.

Once an interrupt is
signalled to the interrupt
controller it follows the
flow shown in Figure 6.

The controller's current
interrupt status is checked
first, and then, if interrupts
are currently enabled (I =

0), the appropriate interrupt
vector is placed into the
program counter (after
saving the PC and CCR
registers) and execution
begins from this address,
with all interrupts (except
NMI) disabled.

To disable (mask) individual
interrupts each peripheral
has its own control register
which allows each interrupt
to be enabled separately.
This mechanism is described
in the block diagram of the
interrupt controller shown
in Figure 7.

Interrupt Response Time

As well as being able to
handle multiple interrupts
it is also important to
handle them quickly. The
interrupt response time of
the H8/300 is very fast. A
single chip system can start
execution of an interrupt
service routine in a
minimum of 17 states (1.7uS
at 10MHz) from the event
occurrence.

Interrupt response timings
are shown in Figure 8.

Power Down Modes

When running, the H8/300

Interrupt controlier

Figure 7 - Interrupt Controller Block Diagram

> NMI req

Nmi

External (IRQ) or
. ii p

External (IRQ) ar
internal interrupt
enable singie

| Priority declslon loglcl

CCR in CPU

O HITACHI

Figure 8 - H8 / 300 Interrupt

Response Time

No. Reason for wait

On-chip memory | External memory

Interrupt priority decision

2 2

Waut for completion of current instruction

1to 13 5t 17

1

2

3 |SavePCand CCR 4 12
4 |Fetch vector 2 6
5 |Fetch instruction 4 12
6 |internal processing 4 4

[TotaL | 171029 411053 *
* Qock cycles

microcontroller family
displays a very low power
dissipation due to its
CMOS structure.
However, at certain times -
even this is not low
enough, especially when a
battery backup is required.

To provide for such
eventualities, H8/300
devices have three low
power modes: sleep,
software standby and
hardware standby. -Each
offers different advantages
for various application
needs.

Sleep Mode

In this mode the device
switches off the clock to
the CPU, but all of the
on-board peripherals
remain active. Sleep mode
is entered via the “sleep”
instruction, and the CPU
can exit this mode
whenever an enabled
interrupt occurs.

A useful application for
this mode is to reduce the
average power consumed
by a system, using a timer
to “wake” the CPU after a
period of slumber.

Once woken, the CPU can
process for a period of
time and then after
loading the timer again

the sleep instruction can be
executed, lowering the
power consumption.

When sleep mode is
entered the devices current
consumption is reduced by
approximately one third.

Software Standby Mode

Again, this mode can be
entered using the sleep
instruction, but in this case
the on chip oscillator is
stopped completely, putting
the device into standby.

Standby current is very low
with a maximum value of 5
HA. This is coupled with a
data retention voltage of
2V, allowing the
microcontrollers internal
ram contents to Dbe
maintained using just two
1.5V battery cells, or a large
"reservoir" capacitor.

During software standby
mode, the microcontroller
maintains the value of the
I/0O ports, so outputs can be
set to the values the system
requires during power
down, with the knowledge
that they will remain stable
during software standby
mode.

To exit from this mode, any
external interrupt can be
used, and a specialised

timer circuit is provided to
ensure that the on chip
oscillator has started and is
stable before execution of

the interrupt service
routine begins.
Hardware Standby Mode

As with software standby,
hardware standby enters a
state where the on chip
oscillator has been
switched off, and current
consumption is minimal.

However, hardware
standby is entered
depending on the state of
an external pin. This mode
is ideal for putting the
device into standby from
some form of external
signal, for example a
power fail warning.

Unlike software standby
this mode has the effect of
tri-stating all the I/O ports,
and so is an effective
method of taking the
microcontroller off the
bus.

The sole method of
leaving hardware standby
is by first resetting the
device (RES = 0) and then
taking the standby pin
high. When reset is taken
high also (after the clock
oscillator has stabilised)
the device Dbegins
execution from the reset
vector.

H8/300 Peripherals

A crucial part of any
microcontroller's feature
set is its on chip
peripherals. No
microcontroller can boast

that it can provide a
“single chip solution” if it
needs additional devices to
complete a system's
requirements.

But, just integrating a high
density of peripherals onto
the die of a microcontroller
is not enough,
functionality within these
peripherals is also vital.

For example, a timer
designed with no
mechanisms to off-load the
CPU's involvement when
producing timed outputs,
or measuring in-coming
signals can seriously limit
the performance of a
system.

Within the H8/300 family,
a varied range of
peripheral functions are
provided, including
timers, A/D converters
and serial interfaces and
some more unusual
features, such as dual port
RAM. These features
combine to make H8/300 a
true single chip solution.

16 Bit Free Running Timers
(FRT)

Three types of 16 bit FRT are
specified within the H8/300
family. Each variety differs
according to the number and
type of inputs and outputs
that are available to the FRT.

Figure 9 shows the FRT

. which is included in the

H8/330 microcontroller.

All the different FRT's are
based on a 16 bit count
register (FRC). This can be
incremented either from
some derivatives of the
system clock (timer mode)
or from an external pin
(event counter mode). The
maximum resolution of a
FRT in timer mode is 200nS
(when the system clock (e) =
10 Mhz).

Each type of FRT has the
ability to produce complex
output events to a very high
degree of accuracy, using
what are known as output
comparators.

O HITACHI

These comparators are used
to compare the 16 bit value
in a timer register with the
value in the FRC for every
timer increment. When the
two values are equal a
compare match is said to
have occurred, and an
event will be produced.

This event can be anything
from simply setting a status
flag in the timer's control
register, to causing a
transition on a timer output
pin. Another useful event
allows the FRC to be cleared
when a match occurs. These
events can also be
programmed to cause an
interrupt to the CPU.

Referring to the diagram in
Figure 9, it can be seen that
the H8/330 microcontroller
has two of these
comparators (OCRA and
OCRB), and two
corresponding output pins.

Apart from producing
timed outputs, the FRTs in
the H8/300 family can also
be used to measure the
occurrence of edges on

Figure 9- 16-Bit Free Running Timer (H8/330)

INTERNAL CLOCK OCR

EXTERNAL CLOCK
y

a/2 ICR : INPUT CAPTURE REGISTER
/8 TCSR : TIMER CONTROL / STATUS REGISTER
/32 TCR : TIMER CONTROL REGISTER

T

FICI —{ Clock Selection }

FRC : FREE RUNNING COUNTER
: OUTPUT COMPARE REGISTER

| OCRA(16bit) |
A 4

OUTPUT | FT0A <—| - Y { Comparator A |
IGNAL -] I
SIGNALS LFT0B Clear Control FRC (16 biD ‘
FTIA —{ CONTROL v
INPUT FTIB] LOGIC { Comparator B |
N. e A
SIGNALS gg"’ b [OCRB6HH]
[TCSR(8bit) |e=a—
[TCRX (8 bit) |t { ICR D (16 bit) |
- [ICRC(16bit) "~ —o
[_TCRY@bity | [T ICRB (16 bit Tae—
13017 [TCRZ 8bit) fwe L= ICRA(16bit) [———

G HITACHI

incoming signals, using
what is known as input
capture registers.

An input capture register is
a 16 bit register, which can
“capture” the value from
the FRC when an external
event provides a
pre-programmed stimulus.
This stimulus can be either
a positive or negative going
edge on the capture input
pin.

When this stimulus is
detected on a capture input
pin the value currently
contained within the FRC
is transferred into the
appropriate capture
register, so giving a 16 bit
timestamp “ for an input
transition.

By using a capture input to
measure timing values, a
very accurate measurement
can be made, as the time is
captured without any
software intervention and
no allowance need be made
for interrupt latentcy.

An input capture can also
be programmed to produce

programmed event

occurs.

As a FRT has a number of
separate functions, several
interrupts are provided
from each channel of FRT.
For example the H8/330's
FRT can produce 7
separate interrupts. These
interrupts service 2
output comparators, 4
input captures and FRC
overflow.

8 Bit Timer

This timer type offers
similar functionality to
the 16 bit FRT, but with an
8 bit resolution. This timer
is capable of producing a
high frequency output
waveform with no CPU
intervention.

As the block diagram in
Figure 10 shows this
peripheral can be used as
an event counter, or a
timer. If timer mode is
selected several
derivatives of the internal
clock are available.

To produce timed outputs

compare registers (TCORA
and TCORB), with a single
output shared between the
two registers. It is this
sharing which enables the
device to produce high
frequency outputs.

This is done by configuring
the comparators so that a
match on TCORA will set
the timer output pin, and a
match on TCORB will clear
the timer pin, and also clear
the timer. This in effect will
produce an output signal
with a period equal to the
value in TCORB and a
mark equal to the value in
TCORA.

The 8 bit timer's count
value can also be cieared by
an external signal at the
TMRI pin.

The 8-bit timers have the
capability to produce
interrupts, from either of
the comparator registers or
when the timer overflows.

PWM Timers

Pulse Width Modulation,

an interrupt when the this timer has two output (PWM), is a technique
Figure 10 - 8-Bit Timer TCNT : TIMER COUNTER
INT ERN“?‘- CLOCK TCOR : TIME CONSTANT REGISTER
2/2 TCSR : TIMER CONTROL /STATUS REGISTER
EXTERNAL CLOCK : TIMER CONTROL REGISTER

l T_ 0/1024

TMCI —a| Clock Selection —

Y

[TCORA®biD]
y

— Comparator A |

y T
—| Clear Control }f TCNT (8 bip
) Y

< —{ Compa‘rator B |

[TCORB®bin]

T™MO0 -
CONTROL
LOGIC
TMRI —
| TCSR (8bit)

[TCR@bip

10

O HITACH!I

Figure 11 - Using the PWM OutputasaD to A

R1 R2
PWM A.nalogue
Signal
- a -
@ ov

which is commonly used monitor the motor's (SCI) can perform either
to drive mechanical current position. synchronous or

devices such as solenoids asynchronous
or motors. communications, and data
The . H8/350 includes rates of up to 2.5 MBit/Sec

The characteristics of
PWM is a waveform with
a fixed period and a
variable duty cycle. By
changing the duty cycle
(or mark to space ratio)
the average voltage to the
device being driven
changes.

As well as driving
- mechanical devices a
PWM output can also be
used as an analogue
output. This can be
achieved by feeding the
output into a low pass
filter (integrator) as
shown in Figure 11.

H8/300 family members
can have PWM timers
with resolutions of 8-bits
(H8/330), or 14-bits,
(H8/350). The 8-bit timers
can also be used as extra
PWM outputs if
necessary.

Servo Control Timers

To control servo motors
in a closed loop system
some very specialised
timers can be used to

up/down counters ,which
can be used to gather
position information from
a quadrature encoder, and a
single channel of 14-bit
timer, which can produce
a precision drive signal to
a servo motor.

Other specialised timers on
the H8/350 include a 19 bit
free running timer with
the same sort of
functionality as the
previously described 16-bit
FRT.

Serial Communications

This form of
communications is very
often used in a
microcontroller
environment, to talk to
other microcontrollers or
to peripheral devices. The
H8/300 family includes
very powerful peripherals
to facilitate this type of
interface.

These serial
communications interfaces

are supported (sync mode).

Each channel of SCI has its
own baud rate generation
timer, so the use of serial
communications does not
impact the number of
timers available in the
microcontroller. By
programming a control
register and loading the
baud rate register (BRR) a
wide range of data rates
can be achieved from one

source of microcontroller
clock.

In asynchronous mode
several data formats are
catered for, including the
provision of odd or even

parity.

To indicate various
conditions occurring
within the SCI a status
register is provided which
contains flags for receive
buffer full, transmit buffer
full or receive error. Each
of these flags has an
interrupt associated with it
to indicate the occurrance
of such a condition.

G HITACH!

1

Figure 12 - A/D Converter (H8/330)

< Internal Bus

ADDRA
ADDRB
ADDRC
ADDRD

[ADCSR

Control Circuit
A A

[ADCR

—

j—>- 8 bit

l-— AVcc

D/A

lt— AVss

<« ANO
l— AN1
Analogue<— AN2

. _ j=— AN4
Selection — ANS

~4— ANG6
<+ AN7

ADTRG

Each of the SCI data
registers (TDR and RDR) is
double buffered so it is
possible to transmit and
receive data in a “ back to
back “ manner.

Interface Peripherals

As well as serial
communications the
H8/300 family also has the
facility to provide a parallel
interface to other devices.
In the case of H8/330 using
a dual port RAM, and via a
handshaking interfacing
on the H8/32X series.

The dual port ram of the
H8/330 comprises a set of
15 registers which can be
accessed from the internal
CPU, or from another
device via an SRAM-like
interface.

Using this facility, the
H8/330 can be used as an
intelligent peripheral in a
large system.

A/D Converter

Some variants within the
H8/300 family have
Analogue / Digital
converters which allow
the microcontroller to
monitor voltage or cther
“real world” values and
therefore control such
variables.

The H8/330 has an 8
channel A/D converter,
which is shown in Figure
12. The H8/350 has 16
channels of A/D in
keeping with its role as a
servo microcontroller.

These A/D converters
have resolutions of 8 bits,
and they achieve their
specified number of
channels using an
analogue multiplexer (8:1
or 16:1). After the
multiplexer a sample and
hold circuit is included.

Once a conversion has
begun its result will not be
affected by any changes on
the external input.

Conversion is performed
very quickly, taking either
12.2uS or 24.2uS
(programmable) - if the
system clock frequency is
10MHz.

To remove responsibility
for servicing the A/D
converter from the CPU a
scan mode is provided.
When scan mode is the
selected a number of
channels (1-4) will be
converted sequentially.
This operation is
continuous, and the A/D
converter has 4 data
registers (ADDRA -
ADDRD) to store each
result.

Another useful feature of
the H8/300 family's A/D
converter is its ability to
begin a conversion when it
receives an external
stimulus, using a trigger
pin (ADTRG).

12 @ HITACHI

THE HS8 /300 FAMILY OF
MICROCONTROLLERS

H8 / 300 FAMILY MIGRATION

Program Memory
Size

A

H8/324

H8/330

3>
Peripheral
Integration
Under Development
H8/300 Part Numbers
8 CP 6
L 7 jx S
HDé4 3 XXx8 CG 8
C
1 F 10
8 = EEPROM CP = PLCC& 6 = 6MHz System Clock
7 = ZTAT Memory CG = LCC ¥ 8 = 8MHz System Clock
3 = Mask ROM F = QFP80A 10 = 10MHz System Clock
1 = ROM Less C = ceramic dil (shrink)
S = plasticdil (shrink)

For Example:

HD6473308F10 = H8/330, QFP - 80A, 10MHz

@ HITACH!

H8/ 330

This member of the H8/300
family is an ideal general purpose
microcontroller, due to its high
level of peripheral integration
and large pin count.

Its features include :-

16 KBytes ROM/PROM/EPROM

512 Bytes RAM

16 Bit Counter / Timer - 1
channel

8 Bit Counter Timer - 2 channels
8 Bit PWM Timer - 2 channels

8 Bit A/D Converter - 8 channels
Async/Sync Serial Port

58 Input / Output Lines

8 Input Only Lines

15 Bytes Dual-Port Ram

HB8/32X Family

This family of devices all share
an identical pin out and
peripheral set. The
differentiation between the 4
family members is made by the
internal memory size, from 32
KBytes ROM/PROM and 1
KBytes of Ram to 8K Bytes of
ROM/EPROM and 256 Bytes of
RAM.

The H8/32X Family Features are :

16 Bit Counter/Timer - 1 channel
8 bit Counter/Timer - 2 channels
Async/Sync Serial Port- 2
channels

Parallel Handshaking Interface

See Table 1 For Memory Sizes

|

(>
§F,>

——

-1

P4oTMCP
P41/TMCD
P42/TMRO >
P43TMCH
P44/TMO1

PWO

PWI

P46
P47

P50/ATXD
PS1/ARXD
P52/ASCK

22 mgafoo
25 s 5] DN NDON
%k E29853882884884
! 1
, 2222322222222
1oAe t:owﬁ? ADTR
PivA Pgmﬂd’:l <
PryAz D = P9y1RCe
P1vAs hot = POYCTAD
PluAs 3 Z [t P9 CE
PryAs &£ - é ::.:' “:gnﬁ‘?wg
PluAe = | a [t POye
PruA? (@] § é hetmtm POXWEWAIT
RAM —
P2vAs <o 3 < o= P3000BaO0
P2UAS ~ave 512 bytes £ Pt P31,0084/0
P22Are <= e P3¥00B202
P2yAN o~ Quai-port [e—a P35008x0)
P2VA12 -l § RAM — = P34/00840¢
P2yAI3 a0 [P3¥DO8v0s
PwAie = (| [Senm <:>] -
P20A1s <o ([+ PI¥0082707
P8aFTCl | _J P8y
PSVFTOA 1 PBYRSVIOS
MPH: © (& P8RSy
PaYFTI < PSYRSH
PELFTIC 2 = PLCT0MRQS
PVFTIO o= PEYCROMNAL
PeuFTORIRTE e PBLCSCNI
P8Ry

PloAe
P1vAs

Pla/Ae
PlaAs -
PluAs

PivAs
PlvAe
PliAr

P2a/As —1
P2uyAs
P2vAn—1
Pu/A1 = 5
P2/An—=i &
Pu/Aun i

P2u/Asw
%IA-:

J

U

Data Bus (upper)

Imal
Un0a L

LAl Ju

I

I
|

(=
KO

:rcl

PSR
PSUT:Dh ~—
PSARD, ~—f ¥
PSWSCK: ~—1
PEFTCIH ~—f
PEFTOA —f
P6FTOB —f
POFTI
PesRG -
P6IRGY ~—
PeG: -]
L
PaTMC —]]
PA/TMOy —]
PAo/TMRl —]

PSo/TxDs

P4/TMAL —

P4JTMO: —]
Py
PLE

P4/TMCh —

U

Addiess Bus

oo
=

Table 1: H8 / 32X Memory Variants

DEVICE

EPROM

RAM

H8 / 325

32K

1K

H8 /324

1K

H8 / 323

512B

H8 /322

256B

14

H8/350

When an application needs a
variety of timer functions the
H8/350 really comes into its
own. Designed as a servo
microcontroller this device
boast no less than 12 seperate
timer channels, each with their
own special features.

To make these timers even
more useful a network core
allows inputs and outputs of
the timers to be connected, so
the range of a timer channel
can easily be extended.

The H8/350 Features :

32 KBytes ROM, PROM or
EPROM
512 Bytes of RAM

19-Bit Counter/Timer-1
channel
16-Bit Counter/Timer-2
channels

8-Bit Counter/Timer-4
channels

8-Bit Up/Down Counter-2
channels

14-Bit PWM Timer-2 channels
Async/Sync Serial Port-1
channel

Sync Serial Port-1 channel
8-Bit A/D Converter-16
channels

50 Input/OQutput Lines

16 Input Only Lines

@ HITACHI

EW_E?
le—MOo

[V gg
Q—V“

gi fe—EXTAL

A HiITACHI

H8/310

This device is aimed at smart card
applications, especially with its
large area of on board EEPROM. For
this reason it is available as either a
die, or in chip on board packaging
(COB). More recently this device
has also been made available in a
10 pin small outline package.

The H8/310 features :-

10 KBytes ROM
256 Bytes Ram

8 KBytes EEPROM
11/ OLine

15
H8/310 BLOCK DIAGRAM
H8/300 /0 - —a [/O
VCC =i Cru Port Q
CLK et
RESe——ppr |- — — — — —Vss
- <A
System Control Logic
o
] ROM: 10 KBytes
)
<]
2 < A
P RAM: 256 Bytes
<>
EEPROM: 8KBytes
[—>

16

H8 /300 - A New Look at
Packaging

With the progressive march
towards smaller end
equipment, the pressure on
the allocation of space inside
the equipment is increasing
very rapidly.

It is no longer enough to offer
a highly integrated
microcontroller, it also has to
come in the smallest package
possible.

The H8/300 family lets you
keep one jump ahead of this
trend, offering unbeatable
integration in a wide range
of package options.

Witness the H8/325 with 32K
of OTP PROM and 1K of
RAM, all contained within a
tiny flat package, measuring
just 17.2mm by 17.2mm
across it's gull wings.

Aside from these extremely
small packages, the H8/300
family is also available in
more traditional packaging,
including PLCC and DIL.

G HITACHI

H8 / 300 Package Options

DEVICEKACE] sop.10 | DC#ts | DPe4s | QFP<4A | PLCCS4 | QFP0A | LCCH4 | DE

H8 /310 ° *
HB8/322 FAMILY ° ®

H8/323 L] []

H8/324 [®

H8 /325 [} [[]

H8/330 [[[]

H8 /350 ® [] [

§7.3(2.256) "

B

5}

b
)

3
! 3(0.938 b ég r—r%"i%%r'
s
e s
Oy
1.77820.25 | 48201 :g'-: g :E“E 0.25°3:53]
(3.57020.010) ~6.01920.004) ' §~-§ (0.61078:333)

57.6(2.288)

3

‘sl 58.5mex(2.10Imax) n
G
dlee
slEz
° :‘—';;
Y . 2
il 1,0(0.039) ‘5‘ L4
E i H J205(0750),
2 3
. a[ars | Y
el _sle A
P! 1 ETE g 0.2534
1.77820.25 |o.4820.10 a8 S s (0.01038Y)
(0.67022.010) Totszesss) " g

DC - 645

DP - 645

O HITACHI

17

84Pin 80Pin
— 15.5(0.814) J17.250.3(0.67730.012
—14.0(70.551) . | W C14.0(20551) | |
48 33, ! {
— !
2 |
=
>
e -
i —L
- 2
i
1 = =
1. 18 - 20
I s 5 B 2 3
0.35(0.014) ' goeTsceereN & 2 -3 3 FE
B & E d 0,3030.08 R JEwS
HEE = (uu:moo‘ﬂ"l"—mm #s8s 1.6(0.063)
031 o £3 s Az a3 -—
-2 ;;_ o~5® 3;' ’ o
AT — ,:::, =+ —7 153 |
: 0.10{0.004)] &ig 0.8(0.031) 1!/ 0.8(0.031)
a3 s '
Olg -~
3
e
30.2320.12(1.19020.008) 84Pin
84Pin =239.38(21,183)
4 se
75 53 —029.2120.08(001,15020,018)
- |
3 ' 3
3
o "
3
o
=*4|o
ai
B =) B
= " “g!
" 1 5 o8 |
s ~o
2 i
i) 32 ad I3 E:
m -
=3
0.78(0.029) — o ai P, =53
1 ! i nu-
I 28,2020.80(1.11020.020) | :'i 4 o

SRR

wotiild— LArtox)

1. 020

PLCC -84

LCC -84

18

H8/300 Support Tools

To achieve a development
schedule using a
microcontroller it is
important that the tools
used for developing the
hardware, and often more
importantly, the
embedded software are of
the right quality and
functionality. For example
if a high level language
compiler is used then the
quality of the code
produced can have a
significant impact on the
development cycle.

In introducing the H8/300
series Hitachi has
recognised the importance
of such development
tools, and a great deal of
effort has been put into
ensuring that the right
mix of products is
available, to suit any
engineers requirements.

This range includes full
ANSI C Compilers,
evaluation boards and full
in circuit emulation
systems. The host
supported computers
include standard 640K
personal computers
running DOS and
VAX/VMS machines.

Ansi C Compiler

The H8/300 compiler has
been designed for ease of
use and efficiency, both
during development and
in the resulting code. This
ultra-fast memory-based
software complies totally
to the full ANSI C
proposal, while still
generating efficient
optimised and, when
requested, PROMable code

G HITACH!

in one single pass.
Data Representaticn

The H8/300 C Compiler
supports all ANSI C basic
elements. 'Float’, 'double’
and 'long double' objects are
represented in the IEEE
format. The table below
shows the size in bytes for
the different objects.

char |short | im |iong | Som [doubie [lors (pomer/

double | address
s

1 2 3 4 4 Ry

The basic floating point
operators (+ - * /) support a
numeric range according to
the following table:

Type Preason Soallest Value | Largast Value
IEEE 32 bit 7Dwpts ~1.18E-38 ~3PE-8
IEEE 64 bat 16 Digits -2 E30 ~1. 3 E«208

Absolute values below the
smallest limit will be
regarded as zero while
overflow conditions give
undefined results.

Bit-fields are always based
on 'int' element size.

Memory Models

There are two memory
models available (large and
banked), selectable with the
-m switch. The compiler
will by default (or selected by
-ml) generate code for a
system equipped with up to
64K of RAM / EPROM

(including single-chip
mode). This model is called
large. The bank-switched
model (called 'banked’ and
selected by -mb) is identical
to the large model when it

G HITACH!

comes to variable
allocation. However, it
extends the accessible code
area beyond the 64K limit
with the help of a simple
memory mapping scheme

supplied in assembly
source. The following
table shows which

memory model to select
for a certain hardware

configuration :
Memory Model | Large (default ar o) Bankad (-mb)
Code Area “uK ™M
Variable Area <6iK < 6K
[EEE 32 bit d&31r220 <1835 20
[EEE 64 bit df3ldr20 d835bd 120

Memory Mapped IO

It is possible to access
specific memory locations
directly from a
C-Program, making it
possible to read / write to
for example I/O ports,
without having to write
special assembly routines.
The following example
shows the technique :

#define PORT (*(char *)
(0x4000)) /* Ptr to addr
4000H */

void read_write (char c)
{

PORT = c¢; /* Write ¢ to
absolute address */

¢ = PORT; /* Read of

absolute address */

)
Configuration

Usually the C run-time
system has to be adapted for
the actual hardware that the
software is eventually going
to run on. This is the case
for stack and heapsize as well
as input and output
addresses, eg. for a keypad or
an LCD display.

Stack Size

The basic system requires
about 20 - 40 bytes of
run-time stack. Apart from
the basic needs of the C
run-time system, stack
requirements are dependent
on the worst case function
nesting, interrupts and calls
to C Library functions. The
minimum stack space
required by a function is the
sum of the formal
parameters, local variables
and return address location.
By default the run-time stack
size is set to 512 bytes.

Interrupt Routines
It is possible to write

interrupt routines in either C
or assembler.

19

HB8/300 Specific Extensions

ICCHS8300, the H8/300 C
Compiler, is equipped with
a set of C extensions for
controlling the H8/300
hardware. This coupled
with Memory Mapped 1/0
optimisation decreases the
need for assembly language
routines considerably. The
in-line functions
conceptually work like the
ANSI-type function
declarations shown in
Figure 13.

C Run-Time-Library

Included with the compiler
are four different libraries.
Also included are three
different formatters for the
printf and sprintf routines,
and two formatters for
scanf and sscanf routines.
These are selectable at
link-time, to optimise the
performance / size ratio.

Linking

The XLINK linker has been
designed for ease of use
and versatility. Built into
it is both the linker, locator
and format generator to
produce PROMable code as
fast as possible without any
intermediary files.

Figure 13 - H8/300 Specific Extentions

void set_interrupt_mask (ICE mask);
/* loads mask into the I bit in the CCR */

void sleep (void);
/* executes the sleep instruction */

unsigned char read_E_port (unsigned short address);
/* reads to E port */

void write_E_port (unsigned short address, unsigned char value);
/* writes to the E port */

20

XLINK and ICCHS8300
together perform a very
thorough typecheck of the
generated system.

With simple but powerful
commands it is possible to
link for any memory
configuration and generate
any of the 30 different
output formats to fit most
emulators and PROM
-programmers. Detailed
cross reference listings with
module, segment and / or
symbol information, even
including index for symbols,
are easily generated.

Library Manager

With the XLIB librarian it is

possible to build new
libraries, add or remove
functions in existing
libraries, etc. -
C Library Functions
Character Handling
<:type.h>:

isnum, isalpha, iscntrl,
isdigit, isgraph, islower,
isprint, ispunct, isspace,

isupper, isxdigit, tolower,
toupper.

Variable
<stdarg.h>:
va_arg, va_end, va_start.

Arguments

Non_Local
<setjmp.h>:
longjmp, setjmp.

Jumps

Input / Output <stdio.h>:
getchar, gets, printf, putchar,
scanf, sscanf, sprintf.

General Utilities <stlib.h>
atof, atoi, atol, exit, calloc,
free, malloc, realloc.

String Handling <string.h>:
strcat, stremp, strcpy, strlen,
strncat, strncmp, strncpy.

Mathematics <math.h>:
atan, atan2, cos, exp, log,
log10, modf, pow, sin, sqrt,
tan.
Low-Level Routines
<icclbutl.h>:

_formatted_write,

_formatted_read.

C Level Debug

C-SPY is a window oriented
C debugger, designed for
ease-of-use while not
compromising its power.
C-SPY is memory-based to
be as fast as possible, and
also has the option to work
in a filebound fashion.

C-SPY has been provided
with a complete knowledge
of the C language. This
allows some unique
features, such as debugging
by statement rather than by
line, since C is built by
statement.

All definitions allowed in
C are debuggable in C-SPY:
stack based or global

@ HITACHI

variables, integers strings,
structures, pointers, #define
and enum symbols. It even
allows for the debug of code
in #include- files.

Each version of C-SPY uses
the same small set of
powerful commands
independent of host and
target. To improve the
ease-of-use further, a
two-level on-line help is
available. To make usage as
comfortable as possible, all
commands may be
abbreviated and most
frequent commands have
been defined as function
keys.

The simulation of the
H8/300 processor is
extremely fast with support
for both memory models.
C-SPY provides debugging
capability, both at the C
source level and the
assembler/ memory/
register level if necessary.
This gives the user total
access to his programs
interaction with the CPU.

System Overview

Figure 14 shows how C-SPY
fits together with the other

Text Editor *

Figure 14

ANSIC]

Cross Compilers |-

\

Relocating
Macro Assemblers

1 .
-~

Y

XLINK
Universal Linker

XLIB
Universal Librarnan

1

C-siY
High Level Debuggen
/ Simulator

|- Single Board Comput

|—amm- PROM Programmer *

| g Target Emulator*

er*

[] C-siY
High Level Debugger
/ Emulator Driver

Target tmulator *

connected to
the Host Computer

: User supplied item

B - Product desctibed in this document

G HITACH!

components of the H8/300
software tool box.

Simulator Architecture

The simulator is
essentially a processor with
64K of memory. It is also
capable of handling
bank-switch code. The
memory needed is
allocated dynamically to
C-SPY by the host.

Emulator Architecture

To allow C-SPY to
interactively debug real
time software, an emulator
version is also available.
This version of C-SPY
provides an interface front
~end to Hitachi EMS83XX
emulators.

The user is therefore able
to debug software at the C
level, while the code is
executing in real time, in
the actual target system.

cp = &array(i);

print f (*%c\n", *cp);
}
{oid main O

inti;
forU=0,d =1;{< TWO_POWER ; i++)
d =2

p{ic.;\tf (2 to the power of %d is %d\n*, TWO_POWER.d);
);

21
The C-SPY Screen
The screen has three default modes as follows
a) C Level Mode
~~demo #22 V2.00/ DOSmm

~Terminal I/0Q

2 to the power of 13 is 8192

— C-SPY
—

—
P window reg on

b) C Level Mode with registers and memory information

—demo #22 Registers V2.00/DOS—
RO R1 R2 R3 PC
=4 il
Pointf (Rekn®) @SE 0002 0006 0126 WBAE
R4 RS R6 rR7 HNZVC
void main O 0000 0000 0000 C208 100100
lMemory
inti; BFE2 52 " 52 52 52 52 52 52 352
for(im0,d = 1;i <« TWO_POWER ;i BFEA 52 52 52 52 52 5:1 2 =2
Aon2 = -) lBFR2 2 2 33 92 2 5 = =
pringf to the of %d is ®d\n", BFFA 52 52 52 52 52 52 20 o0
e ﬁgﬁowm, d) B Co2 61 62 63 64 00 00 00 OO
£ G CO0A 00 00 52 52 S2 52 52 S2
} o2 2 2 N 2 2 2 2 R
CO1A 52 52 52 52 S2 52 R %
oz 52 52 52 52 52 52 52 SR
Terminal I/O
—
d
— CSPY
evaluated to OxC002
— memary OxcO02
— step
o) Cand Assemble Mode with register and
memory 1nformat10n
— demx Registers V2.00/ DOS—
0366 main ; #2,R7 RO R1 R2 R3 PC
1887 SUBS.W @CA4 001D 0006 0126 03BAS8
inti; Re RS R6 R7 HNZVC
0000 0000 0000 C208 100100
fort=0,d = 1;1 < TWO_POWER ; i++) o
368 1900 SUB.W RO, RO BFE2 352 52 52 52 32 32 32 33
036A 69F0 MOV.W RO, @R7 BFEA 52 52 52 52 52 52 52 53
@6eC MOV.W #1,RO BFF2 52 52 52 S2 52 52 52 53
0370 6B8OCDO00 MOV.W RO, &d BFFA 52 52 52 52 2 52 20 og
74 20002: Q002 61 62 63 64 00 00 00 od
w74 #70 MOV.W @R7, 40 COOA 00 00 52 52 2 2 52 33
376 79010000 MOVW #H'D.R1lcp12 52 52 52 52 52 52 S52 53
a37A 1D10 CMP.W R1, RO CO1A 352 32 52 S2 52 52 52 53
[ec v ad :c:zzz BGE 20001 Cozz s2 52 52 52 52 52 52 s3
Terminal [/O
2 to the power of 13 is 8192
— C-SPY
— g
Break at demmo \ #25 (main)
—— level

22

High Specification
Emulator EM83XX

This system provides full
real time emulation of
the H8/300 family. If
used in conjunction with
the appropriate C-SPY
package this emulator can
also provide C source
level debugging, whilst
retaining its real time
emulation capability.

The EMS83XX is Dbased
around three key
components: a main
system unit, a target probe
and an analyser probe.
Interface to the host
computer is performed
via a high speed serial
link.

The microcontroller
specific component of the
emulator is the target
probe, and this circuit
uses the evaluation chip
of the appropriate H8/300
device. This EV Chip is
used, as it has all of the
internal buses of the
microcontroller bonded
out, and therefore allows
true real time emulation
without the loss of any of
the devices internal
resources (interrupts,
memory etc.).

By changing this probe
different members of the
H8/300 series can be
emulated.

The emulator supports
fully symbolic debugging,
both in the command
line and when viewing
disassembled code or
listings.

User Interface

To control and drive the
emulator a sophisticated
menu driven front end
software package known as
MimeView is provided.

As well as offering user
friendly windows,
MimeView provides a
number of other features

- which can significantly

shorten the learning curve
of a new user. These features
include a command line
which can accept abbreviated
keywords and prompt the
user with the next available
option whilst a command
line is being typed.

To prevent lengthy
commands having to be
constantly re-typed an
extensive command line
recall and edit facility is also
provided.

@ HITACHI

Emulation Memory

To allow full speed
emulation of the target
processor a large quantity of
zero wait state memory is
provided (256K standard fit)
which can be mapped as
either read write memory,
write protected or guarded.

The memory mapping
command allows blocks of
memory to be allocated in
blocks of 512 Bytes, and by
using this facility the users
target system can be
accurately emulated.

Breakpoints

The EMBS83XX emulators
have been designed with
the maximum breakpoint
flexibility possible by virtue
of a dynamic breakpoint
manager. This part of the
system can be used to give
the user 3 types of control

@ HITACHI

points- break (program
stops), view (program stops
momentarily, and this fact
is reported to the screen)
and trigger (a trigger pulse
Is produced from a BNC
connector at the rear of the
emulator).

These control points can be
placed at any memory
location, and although they
are activated by specified -
addresses, it is also possible
to qualify the break as
execution, data read or data
write. Using the dynamic
break point manager ranges
of breaks are also very easy
to set.

Events

To enable the user to set the
emulator up to perform
complex monitoring tasks
it has been designed with 4
hardware comparators,
which enable emulator
functions to be triggered by
complex conditions on the
various buses within the
device (address, data and

control) as well as by
external events using the
sixteen inputs from the
analyser probe.

To add a further level of
capability to the event
handling each comparator
has two counters assodated
with it. These counters are
a sixteen bit pass counter
and an eight bit delay
counter.

The pass counter allows
the event to be triggered
after a programmed
number of event matches,
so for example it is possible
to trigger an event after the
character “a” has been
written to the serial port
ten times.

Using the pass counter
events can be produced a
set number of cpu cycles
after the initial match
condition occured.

Other facilities provided by
the event circuitry include
sequencing, combination

20 MHz Crynal

]

Figure 15 - LEV8325 Block Diagram

Sl itean s 4]
S _—
Morstor
Data Bus EPROM RAM RTC
—— S— S
Has2s
“ ACIA Surtal Intarface t
Hen
RS-232 Drives
Poreds L
and 6
L
— -
e
; —
2z
]
2
R —
Res -

23

(ANDED) and re-arming.
The re-arming facility is
particulary useful, as one
event can be used to reset
another, and tasks such as
filtering the bus cycles that
are traced can be
implemented.

Trace

Each EMS83XX emulator
comes with an 8K x 128 bit
trace memory with can
capture address, data and
control bus values every
cycle. As well as bus
information the trace
collects 16 user lines (from
the analyser probe) and 48
bits of timestamp data.

The timestamping data is
used to calculate execution
time, either cumulatively
from program
continuation or relatively
from the last instruction.

The trace facility is further
enhanced by the events
described earlier which
allow the user to be very
selective about which
execution data is collected.

Low Cost Evaluation
Boards (LEV83XX)

The LEV83XX series of
evaluation boards is
targetted at providing a cost
effective method in which
to evaluate a H8/300
microcontrollers suitability
for an application.

Aside from this the
functionality of the LEV
boards can also be utilised
to bring a product all the
way from initial feasibility
studies through to
production.

24

Each LEV83XX board
contains a microcontroller
running at its full speed,
plus some external
memory and peripheral
devices. A block diagram of
the LEV8325 is shown in
Figure 15.

To ensure that the
evaluation board has the
same number of I/0
resources as a single chip
device available to the user
the I/O ports used as
address / data lines are
reconstructed using PIA
devices. To allow the board
to communicate with a
host computer without
leaving the
microcontroller short of

serial I/O an external uart
device is used.

Monitor Functions

The microcontroller on the
LEV board is running a
monitor program known as
the Extended Monitor
System (EMS) which allows
the user to download code
to the memory on the board,
and to debug it once it has
been loaded.

The command set supported
by EMS is shown if Figure
16, it can support download
from a personnel computer
in the S-Record object
format.

Figure 16 - EMS Commands

COMMAND

DESCRIPTION

Assemble instructions

Set, display, or cancel breakpoints

Set, display, or cancel break sequence

Convert data

Dump memory contents

Disassemble memory

Data change

Data search

Fill memory

Go

Help information

Load data from host computer

Save data to host computer

Verify memory against file

Display or modify memory

Move memory contents

Display register contents

Single step

alo|=|S2|2]a|0|E|lo|=|2|R|D|o|2]|8|=|>

Step information

. (full stop)

Modify register value

@ HITACH!

This format is supported by
the cross assemblers and
compilers available for the
H8/300 family.

LEV83XX Hardware

As has been mentioned
earlier great care has been
taken when designing the
LEV series of boards to
ensure that all hardware
resources of the
microcontroller are
preserved, using external
components where
necessary.

Aside from this circuitary
the design of the LEV is very
simple, with only the
minimum external
hardware possible used.

To allow the user to connect
the microcontroller to target
hardware all of the device's
I/0O lines are accessible via
headers. To make things
even easier, each LEV also
has a small wire wrap area
on which some interfacing
hardware can be fabricated
easily.

The LEV boards have a dual
purpose, as they are each
also equipped with a
peripheral device, a
HD64160 Real Time Clock
on the LEV8325 and a
Universal Pulse Processor
on the LEV8330. These
boards are therefore
excellent tools with which
to evaluate these
peripherals.

@ HITACHI

Development Tools - Ordering Information

PACKAGE PART NO. DOS PART NO. VAX/ VMS

Ansi C Compiler

Cross Assembler SEO083CPC SEO083CVAX
Utilities

C-SPY High level

language debugger SEQ83CSPC-S SE083CSVAX
(simulator) '

H8/300 Cross Assembler

Utilities SE083PC SE083VAX

Assembler level

H8/330 simulator SE083SIMPC -

Software Designer

kit containing :

Ansi C Compiler

Cross Assembler

C Level Debugger

Assembler Level Simulator (H8/330)

SE083SDKPC -

H8/32X evaluation
board

HB8/330 evaluation
board

H8/325 in circuit
emulator

LEV8325 -

LEV8330 -

EM8325 -

HB8/330 in drcuit

emulator EM8330 -

H8/325 system kit
(contains emulator
plus software design
kit)

$3-8325 -

H8/330 system kit

(as H8/325) 53-8330 -

* Notes

1. This catalogue may, wholly or partially. be subject to change without notice.

2. This catalogue neither ersures the enforcement of any industrial properties on other rights. nor sanctions the enforcement rignt thereot.
Examples of circuit given in this catalogue are only for a better understanaing of the products. There‘ore. Hitachi wiil not be responsidle for any accigents or
problems caused during operation

3. All ngnts reserved: No one :s cermittac i "eproduce or duplicate. :n any form the whole or a part =* 'mis manual without Hitacni's cermission

Technical Questions and Answers

Product H8/300 CPU | Q&A No. QA8300-027A
Topic Debug information
Question | Classification—H8/300
. . : : | Regist
1. IfIlink a program with the /DEBUG option and storc it as an L - glds §r§
absolute module, then use the converter to convert it from SYSROF eé t"mfng
type format to S type or HEX type format, will debug information Write timing
be included? Interrupts
Reset

External expansion

Pcower-down state

Instructions

O | Software

Development tools

Miscellaneous

Answer - Related Manuals

|

; Manual Title

1. Debug information is included only in the SYSROF type format.

No debug information is included in the S type or HEX type format

Other Technical
Documentation

Document Name J

Related Microcomputar
Technical Q&A

| Title

Ad&itional Information J

