

advanced

45 V 15 A

0.55 V

Schottky

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)


DSB 15 IM 45IB

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm-values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- Low losses

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package:

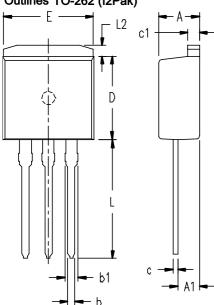
 $V_{RRM} =$

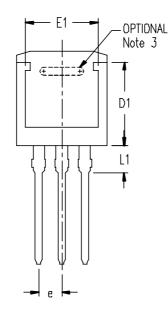
TO-262 (I2Pak)

- Industry standard outline
- Epoxy meets UL 94V-0RoHS compliant

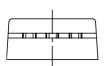
Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{VJ} = 25 °C			45	V
I _R	reverse current	V _R = 45 V	T _{VJ} = 25 °C			10	mA
		$V_R = 45 V$	T_{VJ} = 100 °C			50	mA
V _F	forward voltage	I _F = 15 A	T _{vJ} = 25 °C			0.59	V
		$I_F = 30 A$				0.83	V
		I _F = 15 A	T _{VJ} = 125 °C			0.55	V
		$I_F = 30 A$				0.80	V
I _{FAV}	average forward current	rectangular, d = 0.5	$T_c = 125 ^{\circ}C$			15	Α
V _{F0}	threshold voltage slope resistance $ T_{VJ} = 150 $ for power loss calculation only		T _{vJ} = 150 °C			0.31	V
						15.5	$m\Omega$
R_{thJC}	thermal resistance junction to case					1.75	K/W
T_{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		T _C = 25 °C			70	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			160	Α
CJ	junction capacitance	$V_R = V$; f = 1 MHz	$T_{VJ} = 25 ^{\circ}C$				pF
E _{AS}	non-repetitive avalanche energy	$I_{AS} = A; L = 100 \mu H$	$T_{VJ} = 25 ^{\circ}C$			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$:			tbd	Α




advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to h	neatsink		0.50		K/W	
M_{D}	mounting torque					Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	


^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-262 (I2Pak)

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.160	.190	4.06	4.83	
A1	.080	.110	2.03	2.79	
b	.025	.035	0.64	0.88	
b1	.025	.039	1.14	1.40	
С	.018	.025	0.46	0.64	
с1	.045	.055	1.14	1.40	
D	.340	.380	8,64	9.65	
D1	.270	.290	6.86	7.37	
E	.380	.405	9.65	10.29	
E1	.245	.320	6,22	8.13	
е	.100 BSC		2.54 BSC		
L	.500	.560	12.70	14.22	
L1	.100	.125	2.54	3.18	
L2	.040	.055	1.02	1,40	

- 1. This drawing will meet all dimensions requirement of JEDEC outline TO-262 AA.
- 2. All metal surface are matte pure tin plated except trimmed area.
- 3. Inter locking slot depends upon frame type.